設(shè)a、b是常數(shù),且b>0,拋物線y=ax2+bx+a2-5a-6為圖中兩個(gè)圖象之一,則a的值為( 。
A.6或-1B.-6或1C.6D.-1

由圖象可得出:兩圖象經(jīng)過原點(diǎn),則a2-5a-6=0,
解得:a1=6,a2=-1,
∵兩二次函數(shù)的對稱軸經(jīng)過x軸的正半軸,
∴a,b異號(hào),
又∵b>0,
∴a<0,
∴a=-1.
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.
(1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;
(2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;
(3)問小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)當(dāng)x=1時(shí),y有最大值為5,且它的圖象經(jīng)過點(diǎn)(2,3),求這個(gè)函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-x2-1的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把拋物線y=x2+bx+c的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,所得圖象的解析式為y=x2-2x+3,則b的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(
1
2
,1
),下列結(jié)論:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正確結(jié)論的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,坐標(biāo)系的原點(diǎn)為O,點(diǎn)P是第一象限內(nèi)拋物線y=
1
4
x2-1上的任意一點(diǎn),PA⊥x軸于點(diǎn)A.則OP-PA值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:
①a+b+c>0;②b2-4ac>0;③abc<0;④2a+b>0
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論中,錯(cuò)誤的是(  )
A.a(chǎn)bc<0B.b2-4ac>0C.a(chǎn)-b+c<0D.a(chǎn)>2

查看答案和解析>>

同步練習(xí)冊答案