【題目】如果水位升高1米記為+1米,那么水位下降2米應(yīng)記為(
A.﹣1米
B.+1米
C.﹣2米
D.+2米

【答案】C
【解析】解:水位升高1米記為+1米,那么水位下降2米應(yīng)記為﹣2米,
故選:C.
【考點(diǎn)精析】本題主要考查了正數(shù)與負(fù)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握大于0的數(shù)叫正數(shù);小于0的數(shù)叫負(fù)數(shù);0既不是正數(shù)也不是負(fù)數(shù);正數(shù)負(fù)數(shù)表示具有相反意義的量才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購成為時(shí)下最熱的購物方式,同時(shí)也帶動(dòng)了快遞業(yè)的發(fā)展.某快遞公司更新了包裹分揀設(shè)備后,平均每人每天比原先要多分揀50件包裹,現(xiàn)在分揀600件包裹所需的時(shí)間與原來分揀450件包裹所需時(shí)間相同,現(xiàn)在平均每人每天分揀多少件包裹?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).

(1)當(dāng)﹣2x3時(shí),求y的取值范圍;

(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).

某校九年級(jí)50名學(xué)生跳高測(cè)試成績(jī)的頻數(shù)表

組別(m)

頻數(shù)

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10

(1)求a的值,并把頻數(shù)直方圖補(bǔ)充完整;

(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績(jī)?cè)?.29m(含1.29m)以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1、0、1、2這四個(gè)數(shù)中,最小的數(shù)是(
A.﹣1
B.0
C.1
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O1和⊙O2相切,⊙O1直徑為9cm,⊙O2直徑為4cm,則O1O2長(zhǎng)為( )

A.5cm13cmB.2.5cm

C.6.5cmD.2.5cm6.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有兩個(gè)全等的直角三角形△ABC和△EDF,∠ACB=∠F=90°,∠A=∠E=30°,點(diǎn)D在邊AB上,且AD=BD=CD.△EDF繞著點(diǎn)D旋轉(zhuǎn),邊DE,DF分別交邊AC于點(diǎn)M,K.

(1)如圖2、圖3,當(dāng)∠CDF=0°或60°時(shí),AM+CKMK(填“>”,“<”或“=”),你的依據(jù)是

(2)如圖4,當(dāng)∠CDF=30°時(shí),AM+CKMK(填“>”或“<”);

(3)猜想:如圖1,當(dāng)0°<∠CDF<60°時(shí),AM+CKMK,試證明你的猜想..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題的個(gè)數(shù)有(

①帶根號(hào)的數(shù)都是無理數(shù); ②立方根等于它本身的數(shù)有兩個(gè),是01;

0.010.1的算術(shù)平方根; ④有且只有一條直線與已知直線垂直

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與X軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2x1﹣1,0x21,下列結(jié)論:①4a﹣2b+c0;2a﹣b0a+c1;b2+8a4ac.其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案