【題目】隨著人們生活水平的提高,家用轎車越來越多地進(jìn)入家庭,王先生家中買了一輛小轎車,他連接記錄了7天中每天行駛的路程(如下表),以50km為標(biāo)準(zhǔn),多于50km的記為,不足50km的記為,剛好50km的記為“0”.

(1)請求出這七天中平均每天行駛多少千米?

(2)若每行駛100km需用汽油6升,汽油價(jià)5.8/升,請估計(jì)王先生家一個(gè)月(30天計(jì))的汽油費(fèi)用是多少元?

【答案】150千米;(2522.

【解析】

1)將七天行駛的總路程求出除以7即可;(2)每天行駛的路程除以100再乘以6,得每天的汽油量,再乘以油的單價(jià),再乘以30即得一個(gè)月的費(fèi)用.

1 七天的總路程為507+-8-11-14+0-16+41+8=350(千米)

∴平均每天行駛的路程為(千米)

2

答:王先生家一個(gè)月的汽油費(fèi)用522.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.

(1)求m的值和反比例函數(shù)的表達(dá)式;

(2)觀察圖象,直接寫出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;

(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),BMN的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBA延長線上的一點(diǎn),點(diǎn)EAC的中點(diǎn).

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法).

①作∠DAC的平分線AM;

②連接BE并延長交AM于點(diǎn)F

③連接FC.

(2)猜想與證明:猜想四邊形ABCF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線段CE,線段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BF,連接BF,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個(gè)小長方

形,然后按圖的方式拼成一個(gè)正方形。

(1)你認(rèn)為圖中的陰影部分的正方形的邊長等于_________________.

(2)請用兩種不同的方法列代數(shù)式表示圖中陰影部分的面積。

方法①_________________________________________________________.

方法②_________________________________________________________.

(3)觀察圖,你能寫出,mn這三個(gè)代數(shù)式間的等量關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格中,有以AB為直徑的半圓和線段AP,AB組成的一個(gè)封閉圖形,點(diǎn)A,B,P都在網(wǎng)格點(diǎn)上.

(Ⅰ)計(jì)算這個(gè)圖形的面積為_____;

(Ⅱ)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一條能夠?qū)⑦@個(gè)圖形的面積平分的直線,并簡要說明這條直線是如何找到的(不要求證明)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,……滿足下列條件:a1=0,a2=-a1+1│,a3=-a2+2│,a4=-a3+3│,·……,依次類推,則a2017的值為

A.-1007B.-1008C.-1009D.-2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=2,A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cosEFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+ x+cx軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣ x﹣4x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動(dòng)點(diǎn),過點(diǎn)PPEx軸,垂足為E,交直線l于點(diǎn)F.

(1)試求該拋物線表達(dá)式;

(2)求證:點(diǎn)C在以AD為直徑的圓上;

(3)是否存在點(diǎn)P使得四邊形PCOF是平行四邊形,若存在求出P點(diǎn)的坐標(biāo),不存在請說明理由。

查看答案和解析>>

同步練習(xí)冊答案