【題目】如圖所示,已知△ABC與△CDA關于點O對稱,過O任作直線EF分別交AD,BC于點E,F(xiàn),下面的結(jié)論:
①點E和點F,點B和點D是關于中心O對稱點;
②直線BD必經(jīng)過點O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對稱.
其中正確的個數(shù)為(

A.1
B.2
C.3
D.4

【答案】D
【解析】解:△ABC與△CDA關于點O對稱,則AB=CD、AD=BC,
所以四邊形ABCD是平行四邊形,即點O就是ABCD的對稱中心,則有:(1)點E和點F,B和D是關于中心O的對稱點,正確;(2)直線BD必經(jīng)過點O,正確;(3)四邊形DEOC與四邊形BFOA的面積必相等,正確;(5)△AOE與△COF成中心對稱,正確;其中正確的個數(shù)為4個,故選D.
由于△ABC與△CDA關于點O對稱,那么可得到AB=CD、AD=BC,即四邊形ABCD是平行四邊形,由于平行四邊形是中心對稱圖形,且對稱中心是對角線交點,據(jù)此對各結(jié)論進行判斷.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°AC平分∠BAD,CEAB,CFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC=4,BD平分∠ABC,過點AAD⊥BD于點D,過點DDE∥CB,分別交AB、AC于點E、F,若EF=2DF,則AB的長為(  )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后ABC的頂點均在格點上,C的坐標為4,-1).

1請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;

2ABC的面積是

3Pa+1b-1與點C關于x軸對稱,a= b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,A=D.

(1)求證:ACDE;

(2)BF=13,EC=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.

(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:(1);(2);(3)+1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,點PB點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經(jīng)過多少時間,△ABP為等腰三角形?

備用圖1

備用圖2 備用圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°,∠B′=110°,則∠BCA′的度數(shù)是(

A.90°
B.80°
C.50°
D.30°

查看答案和解析>>

同步練習冊答案