【題目】服裝專賣店計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的精品女裝.已知3件A型女裝和2件B型女裝共需5400元;2件A型女裝和1件B型女裝共需3200元.
(1)求A,B兩種型號(hào)女裝的單價(jià);
(2)專賣店購(gòu)進(jìn)A,B兩種型號(hào)的女裝共60件,其中A型的件數(shù)不少于B型件數(shù)的2倍,如果B型打八折,那么該專賣店至少需要準(zhǔn)備多少貨款.
【答案】(1)A、B型單價(jià)分別為:1000元和1200元;(2)59200元
【解析】
(1)根據(jù)等量關(guān)系式:A型女裝費(fèi)用+B型女裝費(fèi)用=總費(fèi)用,列寫方程并求解可得;
(2)設(shè)A型x件,則B型(60-x)件,根據(jù)限定條件A型的件數(shù)不少于B型件數(shù)的2倍,可得x的取值范圍,然后根據(jù)一次函數(shù)性質(zhì)得出最少貨款情況.
(1)設(shè)A型女裝x件,B型女裝y件
則根據(jù)題意得:
解得:
答:A、B型單價(jià)分別為:1000元和1200元;
(2)設(shè)A型x件,則B型(60-x)件,設(shè)總費(fèi)用為y元
則:y=1000x+1200(60-x)
化簡(jiǎn)得:y=40x+57600
∵A型的件數(shù)不少于B型件數(shù)的2倍
∴x≥2(60-x)
解得:x≥40
∴當(dāng)x=40時(shí),y取得最小值,最小值為:59200
答:最少貨款為59200元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形是矩形,點(diǎn)在對(duì)角線上,點(diǎn)在邊上(點(diǎn)與點(diǎn)、不重合),,且.
(1)求證:四邊形是正方形;
(2)聯(lián)結(jié),交于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若兩條拋物線在x軸上經(jīng)過(guò)兩個(gè)相同點(diǎn),那么我們稱這兩條拋物線是“同交點(diǎn)拋物線”,在x軸上經(jīng)過(guò)的兩個(gè)相同點(diǎn)稱為“同交點(diǎn)”,已知拋物線y=x2+bx+c經(jīng)過(guò)(﹣2,0)、(﹣4,0),且一條與它是“同交點(diǎn)拋物線”的拋物線y=ax2+ex+f經(jīng)過(guò)點(diǎn)(﹣3,3).
(1)求b、c及a的值;
(2)已知拋物線y=﹣x2+2x+3與拋物線yn=x2﹣x﹣n(n為正整數(shù))
①拋物線y和拋物線yn是不是“同交點(diǎn)拋物線”?若是,請(qǐng)求出它們的“同交點(diǎn)”,并寫出它們一條相同的圖像性質(zhì);若不是,請(qǐng)說(shuō)明理由.
②當(dāng)直線y=x+m與拋物線y、yn,相交共有4個(gè)交點(diǎn)時(shí),求m的取值范圍.
③若直線y=k(k<0)與拋物線y=﹣x2+2x+3與拋物線yn =x2﹣x﹣n (n為正整數(shù))共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D,當(dāng)AB=BC=CD時(shí),求出k、n之間的關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,點(diǎn)均在格點(diǎn)上,為小正方形邊中點(diǎn).
(1)的長(zhǎng)等于 ______;
(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出一個(gè)點(diǎn),使其滿足說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線B→C→D→B運(yùn)動(dòng),設(shè)點(diǎn)P經(jīng)過(guò)的路程為x,的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖2所示,則圖2中的a等于( )
A.25B.20C.12D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點(diǎn),,為圓心,以的長(zhǎng)為半徑作,,.三段弧所圍成的圖形就是一個(gè)曲邊三角形,如果一個(gè)曲邊三角形的周長(zhǎng)為,那么這個(gè)曲邊三角形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過(guò)O點(diǎn)作OF⊥AB交⊙O于點(diǎn)D,交AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,點(diǎn)G是EF的中點(diǎn),連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當(dāng)∠DCE=2∠F,CE=3,DG=2.5時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點(diǎn),設(shè)該拋物線與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為D,連接CD交x軸于點(diǎn)E.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求該拋物線的對(duì)稱軸和D點(diǎn)坐標(biāo);
(3)點(diǎn)F,G是對(duì)稱軸上兩個(gè)動(dòng)點(diǎn),且FG=2,點(diǎn)F在點(diǎn)G的上方,請(qǐng)直接寫出四邊形ACFG的周長(zhǎng)的最小值;
(4)連接BD,若P在y軸上,且∠PBC=∠DBA+∠DCB,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為8,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是AB邊上一動(dòng)點(diǎn),連接 PD,PE,則PD+PE長(zhǎng)度的最小值為( )
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com