【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:;
(2)若,,求CD的長(zhǎng).
【答案】(1)見解析;(2).
【解析】
(1)連接OC,根據(jù)切線的性質(zhì),判斷出AD∥OC,再應(yīng)用平行線的性質(zhì),即可推得.
(2)連接BC,通過證明△ADC△ACB,可求出AD的長(zhǎng),再在Rt△ADC中,通過勾股定理可求出CD的長(zhǎng).
解:(1)證明:如圖,連接OC,
,
∵CD是⊙O的切線,
∴OC⊥CD.
∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO.
∵OA=OC,
∴∠CAB=∠ACO,
∴∠DAC=∠CAB.
(2)如圖,連接BC
∵AB是⊙O的直徑,
∴∠ACB=90°.
∵AD⊥CD,
∴∠ADC=90°.
∴∠ADC=∠ACB.
由(1)知∠DAC=∠CAB,
∴△ADC△ACB.
∴.
∵,,則可設(shè)AD=2x,AB=3x,x>0,
∴.
解得x=2.
∴AD=4.
在Rt△ADC中,由勾股定理,得CD==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,過點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn);再過點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,的長(zhǎng)為半徑畫弧交軸正半軸于點(diǎn),...,按此做法進(jìn)行下去,則的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC=60°,∠BAD的平分線交CD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,連接DF.
(1)求證:△ABF是等邊三角形;
(2)若∠CDF=45°,CF=2,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CF⊥AD.
(1)證明:點(diǎn)E是OB的中點(diǎn);
(2)若AB=8,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,點(diǎn)D是邊的中點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn)D,交邊于點(diǎn)E,直線的解析式為.
(1)求反比例函數(shù)的解析式和直線的解析式;
(2)在y軸上找一點(diǎn)P,使的周長(zhǎng)最小,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,的周長(zhǎng)最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的對(duì)角線相交于點(diǎn)按下列步驟作圖:①以點(diǎn)為圓心,任意長(zhǎng)為半徑作弧,分別交于點(diǎn);②以點(diǎn)為圓心,長(zhǎng)為半徑作弧,交于點(diǎn);③點(diǎn)為圓心,以長(zhǎng)為半徑作弧,在內(nèi)部交②中所作的圓弧于點(diǎn);④過點(diǎn)作射線交于點(diǎn).,四邊形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為S的菱形ABCD中,點(diǎn)O為對(duì)角線的交點(diǎn),點(diǎn)E是線段BC單位中點(diǎn),過點(diǎn)E作EF⊥BD于F,EG⊥AC與G,則四邊形EFOG的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:矩形的邊,,點(diǎn)從點(diǎn)出發(fā)沿線段向點(diǎn)勻速運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿線段向點(diǎn)勻速運(yùn)動(dòng),速度均為,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接,以為對(duì)角線作正方形,連接,則的長(zhǎng)度為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校教職工為慶祝“建國(guó)周年”開展學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽,本次知識(shí)競(jìng)賽分為甲、乙、丙三組進(jìn)行.下面兩幅統(tǒng)計(jì)圖反映了教師參加學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽的報(bào)名情況,請(qǐng)你根據(jù)圖中的信息回答下列問題:
(1)該校教師報(bào)名參加本次學(xué)習(xí)強(qiáng)國(guó)知識(shí)競(jìng)賽的總?cè)藬?shù)為___________人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校教師報(bào)名參加丙組的人數(shù)所占圓心角度數(shù)是__________;
(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分教師到丙組,使丙組人數(shù)是甲組人數(shù)的倍,應(yīng)從甲組抽調(diào)多少名教師到丙組?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com