【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF;證明:
(1)CF=EB.
(2)AB=AF+2EB.
【答案】
(1)證明:∵AD是∠BAC的平分線,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB
(2)證明:∵AD是∠BAC的平分線,DE⊥AB,DC⊥AC,
∴CD=DE.
在△ADC與△ADE中,
,
∴△ADC≌△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
【解析】(1)根據(jù)角平分線的性質“角的平分線上的點到角的兩邊的距離相等”,可得點D到AB的距離=點D到AC的距離即CD=DE.再根據(jù)Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分線性質證明∴△ADC≌△ADE,AC=AE,再將線段AB進行轉化.
科目:初中數(shù)學 來源: 題型:
【題目】星期天小明去逛商場,他發(fā)現(xiàn)商場共有四層,第一層有商品a(a+b)種,第二層有(a+b)2種,第三層有b(a+b)種,第四層有(a-b)2種,則這個商場共有多少種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算化簡
(1)10 + ﹣
(2) ÷( ﹣ )
(3)(2x3y)2(﹣2xy)+(﹣2x3y)3÷(2x2)
(4)( ﹣1)÷ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣10ax+c經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y軸上,OA= 且AC=BC.
(1)求拋物線的解析式;
(2)如圖2,將△AOC沿x軸對折得到△AOC1,再將△AOC1繞平面內(nèi)某點旋轉180°后得△A1O1C2(A,O,C1分別與點A1,O1,C2對應)使點A1,C2在拋物線上,求A1,C2的坐標.
(3)如圖3,若Q為直線AB上一點,直接寫出|QC﹣QD|的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣2x2先向左平移1個單位,再向下平移3個單位,所得拋物線是( )
A.y=﹣2 (x+1)2+3
B.y=﹣2 (x+1)2﹣3
C.y=﹣2 (x﹣1)2﹣3
D.y=﹣2 (x﹣1)2+3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com