某公園有一圓弧形的拱橋,如圖已知拱橋所在的圓的半徑為10米,拱橋頂到水面距離米.

(1)求水面寬度的大;
(2)當(dāng)水面上升到時(shí),從點(diǎn)測(cè)得橋頂的仰角為,若=3,求水面上升的高度.
(1)16(2)2
解:(1)設(shè)拱橋所在圓的圓心為,由題意可知,點(diǎn)的延長(zhǎng)線上,
聯(lián)結(jié)
,
                                                      (1分)
中,
                                                           (2分)
,是半徑, 
                                                   (2分)
即水面寬度的長(zhǎng)為米.
(2)設(shè)相交于點(diǎn),聯(lián)結(jié), 

,
,                                            (1分)
中,, 
                                                         (1分)
設(shè)水面上升的高度為米,即,則,

中,,
, 化簡(jiǎn)得
解得(舍去),                                            (2分)
答:水面上升的高度為2米
(1)設(shè)拱橋所在圓的圓心為O,由題意可知,點(diǎn)O在DC的延長(zhǎng)線上,連接OA,在Rt△ADO中利用勾股定理求出AD的長(zhǎng),再由垂徑定理求出AB=2AC即可得出答案;
(2)設(shè)OD與EF相交于點(diǎn)G,連接OE,由EF∥AB,OD⊥AB,可知OD⊥EF,∠EGC=∠EGO=90°,在Rt△EGC中,由cotα="EG/CG" =3,可知EG=3CG,設(shè)水面上升的高度為x米,即DG=x,則CG=4-x,則EG=12-3x,在Rt△EGO中,利用勾股定理即可求出x的值,進(jìn)而得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,OA = 6,AB = 4,直線y =" -" x +3與坐標(biāo)軸交于D、E。設(shè)M是AB的中點(diǎn),P是線段DE上的動(dòng)點(diǎn).

(1)求M、D兩點(diǎn)的坐標(biāo);
(2)當(dāng)P在什么位置時(shí),PA = PB?求出此時(shí)P點(diǎn)的坐標(biāo);
(3)過(guò)P作PH⊥BC,垂足為H,當(dāng)以PM為直徑的⊙F與BC相切于點(diǎn)N時(shí),求梯形PMBH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠B=90°,以O(shè)B為半徑的⊙O的圓心在邊AB上,⊙O與AB相交于點(diǎn)E,與AC相切于點(diǎn)D,已知AD=8,CD=12

(1)求BC及AB的長(zhǎng)              (2)求證DE//OC   
(3)求半徑OB及線段AE的長(zhǎng)       (4)求OC的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,⊙O是△ABC的外接圓,AB是直徑,OD∥AC,且∠CBD=∠BAC,OD交⊙O于點(diǎn)E.
(1)求證:BD是⊙O的切線;
(2)若點(diǎn)E為線段OD的中點(diǎn),證明:以O(shè)、A、C、E為頂點(diǎn)的四邊形是菱形;
(3)作CF⊥AB于點(diǎn)F,連接AD交CF于點(diǎn)G(如圖2),求FG FC 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)平面內(nèi),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,圓的半徑為2.下列說(shuō)法中不正確的是(    )
.當(dāng)時(shí),點(diǎn)在圓上;         .當(dāng)時(shí),點(diǎn)在圓內(nèi);            
.當(dāng)時(shí),點(diǎn)在圓外;         .當(dāng)時(shí),點(diǎn)在圓內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

半徑為2的圓中,的圓心角所對(duì)的弦長(zhǎng)為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩圓的圓心距為,其中一個(gè)圓的半徑長(zhǎng)為,那么當(dāng)兩圓內(nèi)切時(shí),另一圓的半徑為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等邊三角形的邊長(zhǎng)為4,則此三角形外接圓的半徑為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A、B、C在⊙O上,∠AOC=60º,則∠ABC=      º.

查看答案和解析>>

同步練習(xí)冊(cè)答案