【題目】現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,
(1)若二次函數(shù)y=mx2+nx+1經(jīng)過(guò)點(diǎn)(2,0),(3,1),試分別求出兩個(gè)函數(shù)的解析式.
(2)若一次函數(shù)y=mx+n經(jīng)過(guò)點(diǎn)(2,0),且圖象經(jīng)過(guò)第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過(guò)點(diǎn)(a,y1)和(a+1,y2),且y1>y2,請(qǐng)求出a的取值范圍.
(3)若二次函數(shù)y=mx2+nx+1的頂點(diǎn)坐標(biāo)為A(h,k)(h≠0),同時(shí)二次函數(shù)y=x2+x+1也經(jīng)過(guò)A點(diǎn),已知﹣1<h<1,請(qǐng)求出m的取值范圍.
【答案】(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>0.
【解析】
(1)直接將點(diǎn)代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;
(2)點(diǎn)(2,0)代入一次函數(shù)解析式,得到n=2m,利用m與n的關(guān)系能求出二次函數(shù)對(duì)稱軸x=1,由一次函數(shù)經(jīng)過(guò)一、三象限可得m>0,確定二次函數(shù)開口向上,此時(shí)當(dāng) y1>y2,只需讓a到對(duì)稱軸的距離比a+1到對(duì)稱軸的距離大即可求a的范圍.
(3)將A(h,k)分別代入兩個(gè)二次函數(shù)解析式,再結(jié)合對(duì)稱抽得h=,將得到的三個(gè)關(guān)系聯(lián)立即可得到,再由題中已知1<h<1,利用h的范圍求出m的范圍.
(1)將點(diǎn)(2,0),(3,1),代入一次函數(shù)y=mx+n中,
,
解得,
∴一次函數(shù)的解析式是y=x﹣2,
再將點(diǎn)(2,0),(3,1),代入二次函數(shù)y=mx2+nx+1,
,
解得,
∴二次函數(shù)的解析式是.
(2)∵一次函數(shù)y=mx+n經(jīng)過(guò)點(diǎn)(2,0),
∴n=﹣2m,
∵二次函數(shù)y=mx2+nx+1的對(duì)稱軸是x=,
∴對(duì)稱軸為x=1,
又∵一次函數(shù)y=mx+n圖象經(jīng)過(guò)第一、三象限,
∴m>0,
∵y1>y2,
∴1﹣a>1+a﹣1,
∴a<.
(3)∵y=mx2+nx+1的頂點(diǎn)坐標(biāo)為A(h,k),
∴k=mh2+nh+1,且h=,
又∵二次函數(shù)y=x2+x+1也經(jīng)過(guò)A點(diǎn),
∴k=h2+h+1,
∴mh2+nh+1=h2+h+1,
∴,
又∵﹣1<h<1,
∴m<﹣2或m>0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示,在矩形ABCD中,點(diǎn)E在BC邊上,△AEF=90°
(1)如圖①,已知點(diǎn)F在CD邊上,AD=AE=5,AB=4,求DF的長(zhǎng);
(2)如圖②,已知AE=EF,G為AF的中點(diǎn),試探究線段AB,BE,BG的數(shù)量關(guān)系;
(3)如圖③,點(diǎn)E在矩形ABCD的BC邊的延長(zhǎng)線上,AE與BG相交于O點(diǎn),其他條件與(2)保持不變,AD=5,AB=4,CE=1,求△AOG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AD的中點(diǎn),已知△DEF的面積為1,則平行四邊形ABCD的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABD中,BC為AD邊上的高線,tan∠BAD=1,在BC上截取CG=CD,連結(jié)AG,將△ACG繞點(diǎn)C旋轉(zhuǎn),使點(diǎn)G落在BD邊上的F處,A落在E處,連結(jié)BE,若AD=4,tanD=3,則△CFD和△ECF的面積比為___;BE長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長(zhǎng)DE交⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;
(2)過(guò)點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的“視線角” 約為,而當(dāng)手指接觸鍵盤時(shí),肘部形成的“手肘角”約為.圖是其側(cè)面簡(jiǎn)化示意圖,其中視線水平,且與屏幕垂直.
()若屏幕上下寬,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離的長(zhǎng).
()若肩膀到水平地面的距離,上臂,下臂水平放置在鍵盤上,其到地面的距離,請(qǐng)判斷此時(shí)是否符合科學(xué)要求的?
(參考數(shù)據(jù): , , , ,所有結(jié)果精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)A、B、C、D在一條直線上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.
(1)求證:△ACE≌△DBF;
(2)如果把△DBF沿AD折翻折使點(diǎn)F落在點(diǎn)G,如圖2,連接BE和CG. 求證:四邊形BGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P(m,n)在拋物線y=ax2-4ax(a>0)上,E為拋物線的頂點(diǎn).
(1)求點(diǎn)E的坐標(biāo)(用含a的式子表示);
(2)若點(diǎn)P在第一象限,線段OP交拋物線的對(duì)稱軸于點(diǎn)C,過(guò)拋物線的頂點(diǎn)E作x軸的平行線DE,過(guò)點(diǎn)P作x軸的垂線交DE于點(diǎn)D,連接CD,求證:CD∥OE;
(3)如圖2,當(dāng)a=1,且將圖1中的拋物線向上平移3個(gè)單位,與x軸交于A、B兩點(diǎn),平移后的拋物線的頂點(diǎn)為Q,P是其x軸上方的對(duì)稱軸上的動(dòng)點(diǎn),直線AP交拋物線于另一點(diǎn)D,分別過(guò)Q、D作x軸、y軸的平行線交于點(diǎn)E,且∠EPQ=2∠APQ,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com