【題目】如圖,△ABC中,ABACBDCE,BFCD,若∠A50°,則∠EDF的度數(shù)是(  )

A.75°B.70°C.65°D.60°

【答案】C

【解析】

根據(jù)等腰三角形的性質(zhì)可得出∠B=∠C∠B的度數(shù),結(jié)合BD=CEBF=CD,即可證出△BDF≌△CEDSAS),由全等三角形的性質(zhì)可得出∠CDE=∠BFD,再根據(jù)三角形內(nèi)角和定理及平角等于180°,即可得出∠EDF=∠B,此題得解.

解:∵AB=AC,∠A=50°,

∴∠B=∠C=180°∠A=65°

△BDF△CED中,,

∴△BDF≌△CEDSAS),

∴∠CDE=∠BFD

∵∠BDF+∠BFD+∠B=180°,∠BDF+∠EDF+∠CDE=180°

∴∠EDF=∠B=65°

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場在清明小假期舉行促銷活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤進行搖獎活動,并規(guī)定顧客每購買200元商品,就可以獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,小明根據(jù)活動情況繪制了一個扇形統(tǒng)計圖,如圖所示.

(1)求每轉(zhuǎn)動一次轉(zhuǎn)盤所獲得購物券金額的平均數(shù);

(2)小明做了一次實驗,他轉(zhuǎn)了200次轉(zhuǎn)盤,總共獲得5800元購物券,他平均每轉(zhuǎn)動一次轉(zhuǎn)盤獲得的購物券是多少元?

(3)請你說明上述兩個結(jié)果為什么有差別?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=12cm,高AD=8cm,把它加工成矩形零件如圖,要使矩形的一邊在BC上,其余兩個頂點分別在AB,AC上.且矩形的長與寬的比為3:2,求這個矩形零件的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是(

A.0.350是精確到0.001的近似數(shù)

B.3.80萬是精確到百位的近似數(shù)

C.一個雞蛋的質(zhì)量為50.47g,用四舍五入法將50.47精確到0.1的近似值為51.0

D.近似數(shù)2.20是由數(shù)四舍五入得到的,那么數(shù)的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一座石拱橋的橋拱是以為圓心,為半徑的一段圓。

請你確定弧的中點;(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

如果已知石拱橋的橋拱的跨度(即弧所對的弦長)為米,拱高(即弧的中點到弦的距離)為米,求橋拱所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線ACBD相交于點E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與x軸的兩個交點A,B關(guān)于直線x=﹣1對稱,且AB=6,頂點在函數(shù)y=2x的圖象上,則這個二次函數(shù)的表達式為________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80米的圍網(wǎng)在水庫中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長度為xm,所列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A70°.按下列步驟作圖:①分別以點BC為圓心,適當(dāng)長為半徑畫弧,分別交BA,BC,CACB于點D,E,F,G;②分別以點D,E為圓心,大于DE為半徑畫弧,兩弧交于點M;③分別以點F,G為圓心,大于FG為半徑畫弧,兩弧交于點N;④作射線BM交射線CN于點O.則∠BOC的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案