【題目】(6分)下面是小馬虎解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度數(shù).
解:根據(jù)題意可畫出圖,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),說明理由.若不會(huì),請(qǐng)將小馬虎的的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強(qiáng)水壩強(qiáng)度,降壩底從A處后水平延伸到F處,使新的背水坡角∠F=45°,求AF的長度(結(jié)果精確到1米,參考數(shù)據(jù): 1.414, ≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB,交AB于點(diǎn)D;∠CAE∠B.
(1)求∠B的度數(shù).
(2)如果AC=3cm,求AB的長度.
(3)猜想:ED與AB的位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=6cm,BC=4cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長度.
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長度嗎?請(qǐng)你用一句簡(jiǎn)潔的話表述你發(fā)現(xiàn)的規(guī)律.
(3)對(duì)于(1)題,如果我們這樣敘述它:“已知線段AC=6cm,BC=4cm,點(diǎn)C在直線AB上,點(diǎn)M,N分別是AC,BC的中點(diǎn),求MN的長度.”結(jié)果會(huì)有變化嗎?如果有,求出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一位籃球運(yùn)動(dòng)員跳起投籃,球沿拋物線y=﹣ x2+3.5運(yùn)行,然后準(zhǔn)確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.
(1)球在空中運(yùn)行的最大高度為多少米?
(2)如果該運(yùn)動(dòng)員跳投時(shí),球出手離地面的高度為2.25米,請(qǐng)問他距離籃框中心的水平距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,完成下列各題
定義:已知A、B、C 為數(shù)軸上任意三點(diǎn),若點(diǎn)C 到A 的距離是它到點(diǎn)B 的距離的2 倍,則稱點(diǎn)C 是[A,B]的2 倍點(diǎn).例如:如圖1,點(diǎn)C 是[A,B]的2 倍點(diǎn),點(diǎn)D 不是[A,B]的2 倍點(diǎn),但點(diǎn)D 是[B,A]的2 倍點(diǎn),根據(jù)這個(gè)定義解決下面問題:
(1)在圖1 中,點(diǎn)A 是 的2倍點(diǎn),點(diǎn)B是 的2 倍點(diǎn);(選用A、B、C、D 表示,不能添加其他字母);
(2)如圖2,M、N 為數(shù)軸上兩點(diǎn),點(diǎn)M 表示的數(shù)是﹣2,點(diǎn)N 表示的數(shù)是4,若點(diǎn)E是[M,N]的2倍點(diǎn),則點(diǎn)E 表示的數(shù)是 ;
(3)若P、Q 為數(shù)軸上兩點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且PQ=m,一動(dòng)點(diǎn)H從點(diǎn)Q 出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t 秒,求當(dāng)t 為何值時(shí),點(diǎn)H 恰好是P和Q兩點(diǎn)的2倍點(diǎn)?(用含m 的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙C與y軸相切,且C點(diǎn)坐標(biāo)為(2,0),直線l過點(diǎn)A(﹣2,0),與⊙C相切于點(diǎn)D,求直線l的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com