在△ABC中,AD是BC邊上的中線,若△ABD和△ADC的周長之差為4(AB>AC),AB與AC的和為14,求AB和AC的長.

解:∵AD是BC邊上的中線,
∴BD=CD,
∴△ABD的周長-△ADC的周長=(AB+AD+BD)-(AC+AD+CD)=AB-AC=4,
即AB-AC=4①,
又AB+AC=14②,
①+②得.2AB=18,
解得AB=9,
②-①得,2AC=10,
解得AC=5,
∴AB和AC的長分別為:AB=9,AC=5.
分析:根據(jù)三角形中線的定義,BD=CD.所以△ABD和△ADC的周長之差也就是AB與AC的差,然后聯(lián)立關(guān)于AB、AC的二元一次方程組,利用加減消元法求解即可.
點評:本題考查了三角形的中線定義,二元一次方程組的求解,根據(jù)周長的差得出邊AB與AC的差等于4是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在△ABC中,AD是高,矩形PQMN的頂點P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是BC上的中線,BC=4,∠ADC=30°,把△ADC沿AD所在直線翻折后點C落在點C′的位置,那么點D到直線BC′的距離是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD是BC邊上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的長.(結(jié)果保留根號)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溫州二模)如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點D,交AC于點F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE、DF分別是△ABD和△ACD的高線,求證:AD⊥EF.

查看答案和解析>>

同步練習冊答案