【題目】如圖,在△ABC中,AB=AC=5,BC=8,將△ABC繞著點B旋轉(zhuǎn)得到△A′BC′,點A的對應(yīng)點A′,點C的對應(yīng)點C′.如果點A′BC邊上,那么點C和點C′之間的距離為____.

【答案】.

【解析】

ADBCD,C′EBCE,如圖1,先利用等腰三角形的性質(zhì)得到 再利用勾股定理計算出AD=4,接著利用旋轉(zhuǎn)的性質(zhì)得A′B=A′C′=AB=5,A′BC′≌△ABC,則利用面積法可求出C′E,然后在RtA′C′E中利用勾股定理計算A′E,于是可在RtC′CE中利用勾股定理計算出CC′.

解:作ADBCD,C′EBCE,如圖1,

AB=AC,

RtABD中,

∵△ABC繞著點B旋轉(zhuǎn)的A′BC′,

A′B=A′C′=AB=5,A′BC′≌△ABC,

A′C=3,SA′BC′=12,

解得

RtA′C′E中,

RtC′CE中,

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點IABC的內(nèi)心,∠AIC=124°,點EAD的延長線上,則∠CDE的度數(shù)為( 。

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙O的圓心A的坐標(biāo)為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P⊙A的切線,且點為B,則PB的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時,不等式x+b的解集;

(3)若點Px軸上,連接APABC的面積分成1:3兩部分,求此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

1)用列表法或畫樹狀圖法,求小麗參賽的概率.

2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動點,連接AE,AD,DE.

填空:

①當(dāng)的長度是____________時,四邊形ABDE是菱形;

②當(dāng)的長度是____________時,△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點A、C在平面直角坐標(biāo)系的坐標(biāo)軸上,AB=4,CB=3,點D與點A關(guān)于y軸對稱,點E、F分別是線段DA、AC上的動點(點E不與A、D重合),且∠CEF=ACB,若△EFC為等腰三角形,則點E的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的長方形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與長方形的一個頂點重合,其余的兩個頂點在長方形的邊上).則剪下的等腰三角形的底邊長可以是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

同步練習(xí)冊答案