(2013•襄陽)如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E,B、E是半圓弧的三等分點,弧BE的長為
2
3
π,則圖中陰影部分的面積為(  )
分析:首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進而利用銳角三角函數(shù)關(guān)系得出BC,AC的長,利用S△ABC-S扇形BOE=圖中陰影部分的面積求出即可.
解答:解:連接BD,BE,BO,EO,
∵B,E是半圓弧的三等分點,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=30°,
∵弧BE的長為
2
3
π,
60π×R
180
=
2
3
π,
解得:R=2,
∴AB=ADcos30°=2
3
,
∴BC=
1
2
AB=
3
,
∴AC=
AB2-BC2
=3,
∴S△ABC=
1
2
×BC×AC=
1
2
×
3
×3=
3
3
2
,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC-S扇形BOE=
3
3
2
-
60π×22
360
=
3
3
2
-
3

故選:D.
點評:此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出∴△BOE和△ABE面積相等是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,BD平分∠ABC,CD∥AB,若∠BCD=70°,則∠ABD的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,平行四邊形ABCD的對角線交于點O,且AB=5,△OCD的周長為23,則平行四邊形ABCD的兩條對角線的和是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,水平放置的圓柱形排水管道的截面直徑是1m,其中水面的寬AB為0.8m,則排水管內(nèi)水的深度為
0.2
0.2
 m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(-1,0),對稱軸為直線x=-2.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設(shè)點P運動的時間為t秒.
①當t為
2
2
秒時,△PAD的周長最小?當t為
4或4-
6
或4+
6
4或4-
6
或4+
6
秒時,△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案