【題目】點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為(2,-1),那么點(diǎn)P的坐標(biāo)是(

A.-2,1B.1-2C.-1,-2D.21

【答案】D

【解析】

根據(jù)平面直角坐標(biāo)系中兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱的坐標(biāo)特點(diǎn),即可求解本題.

解:∵點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為(2-1),

∴P(2,1);

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 軸于點(diǎn), ,反比例函數(shù)與OA、AB分別相交于點(diǎn)D、C,且點(diǎn)D為OA的中點(diǎn),

(1)求反比例函數(shù)的解析式

(2)過(guò)點(diǎn)B的直線與反比例函數(shù)圖象交于第三象限內(nèi)一點(diǎn)F,求四邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②AB=HF,③BH=HF;④BC﹣CF=2HE;⑤OE=OD;其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,對(duì)角線AC上有一點(diǎn)P,連接BP、DP,過(guò)點(diǎn)P作PE⊥PB交CD于點(diǎn)E,連接BE.

(1)求證:BP=EP;
(2)若CE=3,BE=6,求∠CPE的度數(shù);
(3)探究AP、PC、BE之間的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:等邊△ABC的邊長(zhǎng)為4,點(diǎn)P在線段AB上,點(diǎn)D在線段AC上,且△PDE為等邊三角形,當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),AD+AE的值為   ;

[類比探究]在上面的問(wèn)題中,如果把點(diǎn)P沿BA方向移動(dòng),使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請(qǐng)寫(xiě)出你的計(jì)算過(guò)程;

[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點(diǎn)P在線段BA延長(zhǎng)線上,點(diǎn)D在線段CA延長(zhǎng)線上,在△PDE中,PD=PE,∠DPE=a,設(shè)AP=m,則線段AD、AE有怎樣的等量關(guān)系?請(qǐng)用含m,a的式子直接寫(xiě)出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(3,0),G(﹣1,0)兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)若點(diǎn)M時(shí)拋物線在第一象限圖象上的一點(diǎn),求△ABM面積的最大值;

(3)拋物線的對(duì)稱軸交x軸于點(diǎn)P,過(guò)點(diǎn)E(0, )作x軸的平行線,交AB于點(diǎn)F,是否存在著點(diǎn)Q,使得△FEQ∽△BEP?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)照?qǐng)D象,填空:

(1)當(dāng)x時(shí),2x-5=-x+1;
(2)當(dāng)x時(shí),2x-5>-x+1;
(3)當(dāng)x時(shí),2x-5<-x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點(diǎn)E,點(diǎn)P是線段DE上一定點(diǎn)(其中EP<PD)

(1)如圖1,若點(diǎn)F在CD邊上(不與D重合),將∠DPF繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,角的兩邊PD、PF分別交射線DA于點(diǎn)H、G.

①求證:PG=PF; ②探究:DF、DG、DP之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.

(2)拓展:如圖2,若點(diǎn)F在CD的延長(zhǎng)線上(不與D重合),過(guò)點(diǎn)P作PG⊥PF,交射線DA于點(diǎn)G,你認(rèn)為(1)中DF、DG、DP之間的數(shù)量關(guān)系是否仍然成立?若成立,給出證明;若不成立,請(qǐng)寫(xiě)出它們所滿足的數(shù)量關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC, ,點(diǎn)E是BC的中點(diǎn),連接AE、BD.若EA⊥AB,BC=26,DC=12,求△ABD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案