【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會,該籌委會動員居民自愿集資建立一個書刊閱覽室.經(jīng)預(yù)算,一共需要籌資30 000元,其中一部分用于購買書桌、書架等設(shè)施,另一部分用于購買書刊.
(1)籌委會計劃,購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍,問最多用多少資金購買書桌、書架等設(shè)施?
(2)經(jīng)初步統(tǒng)計,有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈送了一批閱覽室設(shè)施和書籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會進(jìn)一步宣傳,自愿參與的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中).則每戶平均集資的資金在150元的基礎(chǔ)上減少了%,求a的值.
【答案】(1)7500元;(2)50.
【解析】
試題(1)不等式的應(yīng)用解題關(guān)鍵是找出不等量關(guān)系,列出不等式求解.本題不等量關(guān)系為:購買書刊的資金不少于購買書桌、書架等設(shè)施資金的3倍.
(2)方程的應(yīng)用解題關(guān)鍵是找出等量關(guān)系,列出方程求解.本題等量關(guān)系為:參與戶共集資20 000元.
試題解析:(1)設(shè)用于購買書桌、書架等設(shè)施的資金為x元,則購買書刊的資金為元,
由題意得:,解得.
答:最多用7500元資金購買書桌、書架等設(shè)施.
(2)由題意得:,
設(shè),則,整理得,,
解得(不合題意,舍去).
∴.∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=900,AC=2BC=,點O在邊AB上,以點O為圓心,,OB的長為半徑的圓恰好與AC相切于D,與邊AB相交于點E.
(1)求證:點D為AC的中點;
(2)若點F為半圓BEF上的動點,連接BD、BF、DF,填空:
當(dāng)∠BDF= 時,四邊形BCDF為菱形;
當(dāng)△BDF為直角三角形時,BF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽泉市郊區(qū)教科局提出開展“三有課堂”,某中學(xué)在一節(jié)體現(xiàn)“三有課堂”公開展示課上,李老師展示一幅圖,條件是:C為直線AB上一點,∠DCE為直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各個小組經(jīng)過討論后得到以下結(jié)論:①∠ACF與∠BCH互余 ②∠FCG與∠HCG互補(bǔ) ③∠ECF與∠GCH互補(bǔ) ④∠ACD﹣∠BCE=90°,聰明的你認(rèn)為哪些組的結(jié)論是正確的,正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0.
其中正確的個數(shù)為(。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A、B、C三點,分別表示有理數(shù)﹣26,﹣10,10,動點P從A出發(fā),以每秒1個單位的速度向右移動,當(dāng)P點運(yùn)動到C點時運(yùn)動停止,設(shè)點P移動時間為t秒。
(1)用含t的代數(shù)式表示P到點A和點C的距離:PA=_____,PC=_____.
(2)當(dāng)點P運(yùn)動到B點時,點Q從A出發(fā),以每秒3個單位的速度向右運(yùn)動,求t等于多少秒時P、Q兩點相遇?t等于多少秒時P、Q兩點相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩點在同一條數(shù)軸上,點A在原點的左邊,到原點的距離為4,點B在原點右邊,點A 到B點的距離為16.
(1)求A,B兩點所表示的數(shù):
(2)若A,B兩點分別以每秒1個單位長度和3個單位長度的速度同時相向移動,在點C相遇,求點C表示的數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中如圖所示,
(1)S△ABC= .
(2)x軸上是否存在點P,使得S△BCP=2S△ABC,若不存在,說明理由;若存在,求出P點的坐標(biāo).
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負(fù)方向以每秒1個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.
(1)點A的坐標(biāo)為 ,矩形ABCD的面積為 ;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com