【題目】如圖,在△ABC中,∠C=900,,,且,若當(dāng)時(shí),代數(shù)式的值最小,且最小值為b.
(1)求 ,的值.(2)求△ABC的面積 .
【答案】(1) a=4,b=16;(2)24
【解析】
(1)先將代數(shù)式變形成的形式,當(dāng)x=4時(shí),它有最小值為16,則可求得a、b的值;
(2)將a、b 的值代入,再求得AC、BC的長度,再根據(jù)面積公式計(jì)算即可.
(1) 因?yàn)?/span>=x2-8x+42+32-42=,
所以當(dāng)x=4時(shí),它有最小值為16,
所以a=4,b=16;
(2)把a(bǔ)=4,b=16代入AB-AC=a,AB+AC=b中,則AB-AC=4,AB+AC=16,
所以2AB=20,
所以AB=10,
所以AC=6,
又因?yàn)锳B2-AC2=BC2,
所以BC=8,
所以△ABC的面積為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中, , 交于 , 平分 ,,下面結(jié)論:① ;②是等邊三角形;③;④,其中正確的有
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為r,現(xiàn)要在圓中畫一個(gè)的菱形ABCD,
(1)當(dāng)頂點(diǎn)D也落在圓上時(shí),四邊形ABCD的形狀是___________(寫出一種四邊形的名稱),邊長為_____________(用含r的代數(shù)式表示) .
(2)當(dāng)菱形有三個(gè)頂點(diǎn)落在圓上,且邊長為r時(shí),請(qǐng)求出作為弦的那條對(duì)角線所對(duì)的圓周角的度數(shù).
(3)在(2)的前提下,當(dāng)其中一條對(duì)角線長為3時(shí),求該菱形的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,AB=AC,∠BAC=58°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,使C與點(diǎn)O恰好重合,則∠OEB=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,若AB=8,點(diǎn)D是AC邊上的中點(diǎn),求S△BCD;
(2)如圖2,若BD是△ABC的角平分線,請(qǐng)寫出線段AB、AD、BC三者之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,若D、E是AC邊上兩點(diǎn),且AD=CE,AF⊥BD交BD、BC于F、G,連接BE、GE,求證:∠ADB=∠CEG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在的圖象上,PC⊥軸于點(diǎn)C,交的圖象于點(diǎn)A,PC⊥軸于點(diǎn)D,交的圖象于點(diǎn)B. 當(dāng)點(diǎn)P在的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①
②的值不會(huì)發(fā)生變化
③PA與PB始終相等
④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)該二次函數(shù)圖象的對(duì)稱軸是x ;
(2)若該二次函數(shù)的圖象開口向下,當(dāng)時(shí), 的最大值是2,求當(dāng)時(shí), 的最小值;
(3)若對(duì)于該拋物線上的兩點(diǎn), ,當(dāng), 時(shí),均滿足,請(qǐng)結(jié)合圖象,直接寫出的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com