【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

【答案】B

【解析】分析:利用矩形性質(zhì)得出要使平行四邊形AC1A1C是矩形,必須滿足AB=BC,即可求出.

詳解x=0,y=bC0,b).

y=0ax2+b=0,x=±,A(﹣,0),B0),AB=2,BC==

要使平行四邊形AC1A1C是矩形必須滿足AB=BC,2=4×(﹣)=b2ab=﹣3,a,b應(yīng)滿足關(guān)系式ab=﹣3

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中.

1)作出關(guān)于對稱的圖形

2)說明,可以由經(jīng)過怎樣的平移變換得到?

3)以所在的直線為軸,的中點為坐標(biāo)原點,建立直角坐標(biāo)系,試在軸上找一點,使得最小(保留找點的作圖痕跡,描出點的位置,并寫出點的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半圓O中,AB是直徑,AB=13,點C是半圓O上一點,AC=12,弦AD平分∠BAC,則sinDAB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交AB于點F,連接BE

1)求證:AC平分∠DAB;

2)求證:△PCF是等腰三角形;

3)若∠BEC=30°,求證:以BC,BE,AC邊的三角形為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當(dāng)其中一點到達(dá)終點時,另一個點也隨之停止運動,設(shè)運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當(dāng)t為何值時,矩形PQNM的面積最小?并求出最小面積;

②直接寫出當(dāng)t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊隊準(zhǔn)備從甲、乙兩名隊員中選取一名隊員代表該隊參加比賽,特為甲、乙兩名隊員舉行了一次選拔賽,要求這兩名隊員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績情況,將甲、乙兩名隊員的比賽成績制成了如下的統(tǒng)計表:

甲隊員成績統(tǒng)計表

成績(環(huán))

7

8

9

10

次數(shù)(次)

5

1

2

2

乙隊員成績統(tǒng)計表

成績(環(huán))

7

8

9

10

次數(shù)(次)

4

3

2

1

1)經(jīng)過整理,得到的分析數(shù)據(jù)如表,求表中的,的值.

隊員

平均數(shù)

中位數(shù)

眾數(shù)

方差

8

75

7

7

1

2)根據(jù)甲、乙兩名隊員的成績情況,該射擊隊準(zhǔn)備選派乙參加比賽,請你寫出一條射擊隊選派乙的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB=6,AC=BC=5,將ABC折疊,使點A落在BC邊上的點D處,折痕為EF(點E.F分別在邊AB、AC上).當(dāng)以B.E.D為頂點的三角形與DEF相似時,BE的長為_____

查看答案和解析>>

同步練習(xí)冊答案