【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別為81 cm2和144 cm2 , 則正方形③的邊長(zhǎng)為( )
A.225 cm
B.63 cm
C.50 cm
D.15 cm
【答案】D
【解析】∵四邊形①、②、③都是正方形, ∴∠EAB=∠EBD=∠BCD=90°,BE=BD, ∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°, ∴∠AEB=∠CBD. 在△ABE和△CDB中, , ∴△ABE≌△CDB(AAS), ∴AE=BC,AB=CD. ∵正方形①、②的面積分別81cm2和144cm2 , ∴AE2=81,CD2=144. ∴AB2=63. 在Rt△ABE中,由勾股定理,得 BE2=AE2+AB2=81+144=225, ∴BE=15. 故答案為:D.抓住已知條件,觀察圖形,可知此圖形是由三個(gè)正方形和兩個(gè)直角三角形組成的。易證這兩個(gè)直角三角形全等,利用勾股定理就可求出正方形③的邊長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若16x2+mxy+9y2是一個(gè)完全平方式,那么m的值是( )
A. 12 B. 24 C. ±12 D. ±24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初一年級(jí)有500名同學(xué),將他們的身高(單位:cm)數(shù)據(jù)繪制成頻率分布直方圖(如圖),若要從身高在 , , 三組內(nèi)的學(xué)生中,用分層抽樣的方法選取30人參加一項(xiàng)活動(dòng),則從身高在 內(nèi)的學(xué)生中選取的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市教育局倡導(dǎo)的“陽(yáng)光體育運(yùn)動(dòng)”的號(hào)召,全校學(xué)生積極參與體育運(yùn)動(dòng).為了進(jìn)一步了解學(xué)校九年級(jí)學(xué)生的身體素質(zhì)情況,體育老師在九年級(jí)800名學(xué)生中隨機(jī)抽取50位學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,以測(cè)試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請(qǐng)結(jié)合圖表完成下列問(wèn)題:
(1)表中的a=;
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第組;
(4)若九年級(jí)學(xué)生一分鐘跳繩次數(shù)(x)達(dá)標(biāo)要求是:x<120為不合格;120≤x<140為合格;140≤x<160為良;x≥160為優(yōu).根據(jù)以上信息,請(qǐng)你估算學(xué)校九年級(jí)同學(xué)一分鐘跳繩次數(shù)為優(yōu)的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(a﹣1)x2+x﹣2=0是一元二次方程,則a滿足( )
A.a≠1
B.a≠﹣1
C.a≠±1
D.為任意實(shí)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的三條角平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,那么這個(gè)圖形中的等腰三角形共有( )
A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com