【題目】近期江蘇省各地均發(fā)布“霧霾”黃色預(yù)警,我市某口罩廠商生產(chǎn)一種新型口罩產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系滿足下表.
銷售單價(jià)x(元/件) | … | 20 | 25 | 30 | 40 | … |
每月銷售量y(萬(wàn)件) | … | 60 | 50 | 40 | 20 | … |
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)三個(gè)模型中確定哪種函數(shù)能比較恰當(dāng)?shù)乇硎緔與x的變化規(guī)律,并直接寫出y與x之間的函數(shù)關(guān)系式為__________;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)為440萬(wàn)元?
(3)如果廠商每月的制造成本不超過(guò)540萬(wàn)元,那么當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
【答案】(1)y=﹣2x+100;(2)當(dāng)銷售單價(jià)為28元或40元時(shí),廠商每月獲得的利潤(rùn)為440萬(wàn)元;(3)當(dāng)銷售單價(jià)為35元時(shí),廠商每月獲得的利潤(rùn)最大,最大利潤(rùn)為510萬(wàn)元.
【解析】
(1)直接利用待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)利潤(rùn)=銷售量×(銷售單價(jià)﹣成本),代入代數(shù)式求出函數(shù)關(guān)系式,令利潤(rùn)z=440,
求出x的值;
(3)根據(jù)廠商每月的制造成本不超過(guò)540萬(wàn)元,以及成本價(jià)18元,得出銷售單價(jià)的取值范
圍,進(jìn)而得出最大利潤(rùn).
解:(1)由表格中數(shù)據(jù)可得:y與x之間的函數(shù)關(guān)系式為:y=kx+b,
把(20,60),(25,50)代入得:
解得:
故y與x之間的函數(shù)關(guān)系式為:y=﹣2x+100;
(2)設(shè)總利潤(rùn)為z,由題意得,
z=y(x﹣18)
=(﹣2x+100)(x﹣18)
=﹣2x2+136x﹣1800;
當(dāng)z=440時(shí),
﹣2x2+136x﹣1800=440,
解得:x1=28,x2=40.
答:當(dāng)銷售單價(jià)為28元或40元時(shí),廠商每月獲得的利潤(rùn)為440萬(wàn)元;
(3)∵廠商每月的制造成本不超過(guò)540萬(wàn)元,每件制造成本為18元,
∴每月的生產(chǎn)量為:小于等于=30萬(wàn)件,
y=﹣2x+100≤30,
解得:x≥35,
∵z=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,
∴圖象開(kāi)口向下,對(duì)稱軸右側(cè)z隨x的增大而減小,
∴x=35時(shí),z最大為:510萬(wàn)元.
當(dāng)銷售單價(jià)為35元時(shí),廠商每月獲得的利潤(rùn)最大,最大利潤(rùn)為510萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第1次操作,折痕到的距離記為,還原紙片后,再將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第2次操作,折痕到的距離記為,按上述方法不斷操作下去…經(jīng)過(guò)第2020次操作后得到的折痕到的距離記為,若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“今有邑,東西七里,南北九里,各開(kāi)中門,出東門一十五里有木,問(wèn):出南門幾何步而見(jiàn)木?”這段話摘自《九章算術(shù)》.意思是說(shuō):如圖,矩形城池ABCD,東邊城墻AB長(zhǎng)9里,南邊城墻AD長(zhǎng)7里,東門點(diǎn)E、南門點(diǎn)F分別是AB、AD中點(diǎn),EG⊥AB,FH⊥AD,EG=15里,HG經(jīng)過(guò)A點(diǎn),則FH=( )
A.1.2 里B.1.5 里C.1.05 里D.1.02 里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元,件甲種玩具的進(jìn)價(jià)與件乙種玩具的進(jìn)價(jià)的和為元.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;
(2)如果購(gòu)進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購(gòu)進(jìn)甲種玩具超過(guò)件,超出部分可以享受折優(yōu)惠,若購(gòu)進(jìn)件甲種玩具需要花費(fèi)元,請(qǐng)你寫出與的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見(jiàn)的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問(wèn)題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,,,,AD、BE相交于點(diǎn)M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當(dāng)時(shí),點(diǎn)P、Q分別為AD、BE的中點(diǎn),分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說(shuō)明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在的圖象上,PC⊥軸于點(diǎn)C,交的圖象于點(diǎn)A,PC⊥軸于點(diǎn)D,交的圖象于點(diǎn)B. 當(dāng)點(diǎn)P在的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:
①
②的值不會(huì)發(fā)生變化
③PA與PB始終相等
④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn).
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD.BC上,且DE=BP=1.連接BE,EC,AP,DP,PD與CE交于點(diǎn)F,AP與BE交于點(diǎn)H.
(1)判斷△BEC的形狀,并說(shuō)明理由;
(2)判斷四邊形EFPH是什么特殊四邊形,并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com