【題目】如圖所示,已知AD=BC,AB=DC,試判斷∠A與∠B的關(guān)系,下面是小穎同學(xué)的推導(dǎo)過(guò)程,你能說(shuō)明小穎的每一步的理由嗎?

解:連接BD

在△ABD與△CDB

AD=BC(______)

AB=CD(______)

BD=DB(______)

∴△ABD≌△CDB(______)

∴∠ADB=CBD(______)

ADBC(______)

∴∠A+ABC=180°(______)

【答案】已知,已知,公共邊,SSS,全等三角形對(duì)應(yīng)角相等,內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).

【解析】

根據(jù)三角形全等的判定方法,分析證明過(guò)程中的理由,再填寫(xiě).

連接BD

ABDCDB

AD=BC(已知)

AB=CD(已知)

BD=DB(公共邊)

∴△ABD≌△CDB(SSS)

∴∠ADB=CBD(全等三角形對(duì)應(yīng)角相等)

ADBC(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)

∴∠A+ABC=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))

故答案為:已知,已知,公共邊,SSS,全等三角形對(duì)應(yīng)角相等,內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:

1)有4張桌子,用第一種擺設(shè)方式,可以坐   人;用第二種擺設(shè)方式,可以坐   人;

2)有n張桌子,用第一種擺設(shè)方式可以坐   人;用第二種擺設(shè)方式,可以坐   人(用含有n的代數(shù)式表示);

3)一天中午,餐廳要接待120位顧客共同就餐,但餐廳中只有30張這樣的長(zhǎng)方形桌子可用,且每6張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(xiàn)(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線(xiàn)y=x交于點(diǎn)B(2,t).

(1)求這條拋物線(xiàn)的表達(dá)式;

(2)在第四象限內(nèi)的拋物線(xiàn)上有一點(diǎn)C,滿(mǎn)足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線(xiàn)上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱(chēng)使等式成立的一對(duì)有理數(shù),共生有理數(shù)對(duì),記為().

(1)通過(guò)計(jì)算判斷數(shù)對(duì)“2,1,“4,是不是共生有理數(shù)對(duì);

(2)(6,a)共生有理數(shù)對(duì),求a的值;

(3)(m,n)共生有理數(shù)對(duì)”,“n,m”___“共生有理數(shù)對(duì)”(不是”),并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,回答下列問(wèn)題:

數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問(wèn)題。例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用這兩個(gè)數(shù)的差的絕對(duì)值表示;

在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為|31|=2

在數(shù)軸上,有理數(shù)52對(duì)應(yīng)的兩點(diǎn)之間的距離為|5(2)|=7;

在數(shù)軸上,有理數(shù)23對(duì)應(yīng)的兩點(diǎn)之間的距離為|23|=5;

在數(shù)軸上,有理數(shù)85對(duì)應(yīng)的兩點(diǎn)之間的距離為|8(5)|=3;……

如圖1,在數(shù)軸上有理數(shù)a對(duì)應(yīng)的點(diǎn)為點(diǎn)A,有理數(shù)b對(duì)應(yīng)的點(diǎn)為點(diǎn)B,A,B兩點(diǎn)之間的距離表示為|ab||ba|,記為|AB|=|ab|=|ba|.

(1)數(shù)軸上有理數(shù)105對(duì)應(yīng)的兩點(diǎn)之間的距離等于___;數(shù)軸上有理數(shù)x5對(duì)應(yīng)的兩點(diǎn)之間的距離用含x的式子表示為___;若數(shù)軸上有理數(shù)x1對(duì)應(yīng)的兩點(diǎn)A,B之間的距離|AB|=2,則x等于___;

(2)如圖2,點(diǎn)MN,P是數(shù)軸上的三點(diǎn),點(diǎn)M表示的數(shù)為4,點(diǎn)N表示的數(shù)為2,動(dòng)點(diǎn)P表示的數(shù)為x.

①若點(diǎn)P在點(diǎn)M,N之間,則|x+2|+|x4|=___;若|x+2|+|x4|═10,則x=___

②根據(jù)閱讀材料及上述各題的解答方法,|x+2|+|x|+|x2|+|x4|的最小值等于___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)以每秒的速度沿如圖甲所示的邊框按從的路徑勻速移動(dòng),相應(yīng)的的面積關(guān)于時(shí)間的圖象如圖乙所示,若,試回答下列問(wèn)題:

(1)求出圖甲中的長(zhǎng)和多邊形的面積;

2)直接寫(xiě)出圖乙中的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)司機(jī)小王某天下午營(yíng)運(yùn)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍?單位:千米)如下:

+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.

(1)將最后一名乘客送到目的地時(shí),小王距下午出車(chē)時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

(2)若汽車(chē)耗油量為0.05升/千米,這天下午小王的汽車(chē)共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)坐標(biāo)為A1,-4),B5,-4),C4-1).

1)在方格紙中畫(huà)出ABC;

2)求出ABC的面積;

3)若把ABC向上平移6個(gè)單位長(zhǎng)度,再向左平移7個(gè)單位長(zhǎng)度得到A′B′C′,在圖中畫(huà)出A′B′C′,并寫(xiě)出B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)西部地區(qū)約占我國(guó)國(guó)土面積的,我國(guó)國(guó)土面積約960萬(wàn)平方公里。若用科學(xué)記數(shù)法表示,則我國(guó)西部地區(qū)的面積為( 。

A. 6.4×106平方公里 B. 6.4×107平方公里

C. 640×104平方公里 D. 64×105平方公里

查看答案和解析>>

同步練習(xí)冊(cè)答案