【題目】我們把有兩條邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形叫做同族三角形,如圖1,在△ABC△ABD中,AB=ABAC=AD,∠B=∠B,則△ABC△ABD同族三角形

1)如圖2,四邊形ABCD內(nèi)接于圓,點(diǎn)C是弧BD的中點(diǎn),求證:△ABC△ACD是同族三角形;

2)如圖3,ABC內(nèi)接于⊙O,⊙O的半徑為,AB=6,∠BAC=30°,求AC的長;

3)如圖3,在(2)的條件下,若點(diǎn)D在⊙O上,ADCABC是非全等的同族三角形,ADCD,求 的值.

【答案】(1)詳見解析;(2)3+3;(3 =

【解析】

(1)由點(diǎn)C是弧BD的中點(diǎn),根據(jù)弧與弦的關(guān)系,易得BC=CD,∠BAC=DAC,又由公共邊AC,可證得:△ABC和△ACD是同族三角形;

(2)首先連接0A,OB,作點(diǎn)BBEAC于點(diǎn)E,易得△AOB是等腰直角三角形,繼而求得答案;

(3)分別從當(dāng)CD=CB時(shí)與當(dāng)CD=AB時(shí)進(jìn)行分析求解即可求得答案.

1)證明:點(diǎn)C是弧BD的中點(diǎn),即,

∴BC=CD,∠BAC=∠DAC,

∵AC=AC,

∴△ABC△ACD是同族三角形.

2)解:如圖1,連接OA,OB,作點(diǎn)BBE⊥AC于點(diǎn)E

∵OA=OB=3,AB=6

∴OA2+OB2=AB2,

∴△AOB是等腰直角三角形,且∠AOB=90°

∴∠C=∠AOB=45°,

∵∠BAC=30°,

∴BE=AB=3,

∴AE==3

∵CE=BE=3,

∴AC=AE+CE=3+3.

3)解:∵∠B=180°∠BAC∠ACB=180°30°45°=105°,

∴∠ADC=180°∠B=75°,

如圖2,當(dāng)CD=CB時(shí),∠DAC=∠BAC=30°,

∴∠ACD=75°

∴AD=AC=3+3,CD=BC=BE=3

=;

如圖3,當(dāng)CD=AB時(shí),過點(diǎn)DDF⊥AC,交AC于點(diǎn)F

∠DAC=∠ACB=45°,

∴∠ACD=180°∠DAC∠ADC=60°

∴DF=CDsin60°=6×=3,

∴AD=DF=,

=

綜上所述: =.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以斜邊上的中線為直徑作,與分別交于點(diǎn)、,與的另一個(gè)交點(diǎn)為.過點(diǎn),垂足為.

1)求證:的切線;

2)若,,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),那么的值和交點(diǎn)坐標(biāo)分別為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點(diǎn)A,畫過A點(diǎn)的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點(diǎn)放在圓上任一點(diǎn)C(與點(diǎn)A不重合)處,使其一直角邊經(jīng)過點(diǎn)A,另一條直角邊與圓交于B點(diǎn),連接AB;

(2)如圖3,將三角板的直角頂點(diǎn)與點(diǎn)A重合,使一條直角邊經(jīng)過點(diǎn)B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點(diǎn)A的圓的切線.

請(qǐng)回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D,E分別是△ABC兩邊的中點(diǎn),如果弧DE(可以是劣弧、優(yōu)弧或半圓)上的所有點(diǎn)都在△ABC的內(nèi)部或邊上,則稱弧DE為△ABC的中內(nèi)。纾瑘D1中弧DE是△ABC其中的某一條中內(nèi)。

1)如圖2,在邊長為4的等邊△ABC中,D,E分別是AB,AC的中點(diǎn).畫出△ABC的最長的中內(nèi)弧DE,并直接寫出此時(shí)弧DE的長;

2)在平面直角坐標(biāo)系中,已知點(diǎn)A2,6),B0,0),Ct0),在△ABC中,D,E分別是AB,AC的中點(diǎn).

t2,求△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)的取值范圍;

請(qǐng)寫出一個(gè)t的值,使得△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)可以取全體實(shí)數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解市民對(duì)全市創(chuàng)文工作的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在全市甲、乙兩個(gè)區(qū)內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問題:

(1)求此次調(diào)查中接受調(diào)查的人數(shù).

(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù).

(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為不滿意的4位市民中隨機(jī)選擇2位進(jìn)行回訪,已知4位市民中有2位來自甲區(qū),另2位來自乙區(qū),請(qǐng)用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場調(diào)查發(fā)現(xiàn):若每箱以50元的價(jià)格出售,平均每天銷售80箱,價(jià)格每提高1元,平均每天少銷售2箱.

⑴.求平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;

⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;

⑶.當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EBC邊上,點(diǎn)FDC的延長線上,且∠DAE=∠F

(1) 求證:△ABE∽△ECF;

(2) AB=5,AD=8BE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案