【題目】如圖,已知等腰△ABC,AB=AC=8,∠BAC=120°,請(qǐng)用圓規(guī)和直尺作出△ABC的外接圓.并計(jì)算此外接圓的半徑.
【答案】見(jiàn)解析
【解析】
作出AB,AC的垂直平分線,兩垂直平分線的交點(diǎn)就是圓心,以交點(diǎn)為圓心,交點(diǎn)到三角形的頂點(diǎn)為半徑畫(huà)圓可得△ABC的外接圓;再根據(jù)垂徑定理得出∠BAO=60°,得出△ABO為等邊三角形,從而求得外接圓的半徑.
作出AB,AC的垂直平分線,兩垂直平分線的交點(diǎn)就是圓心,以交點(diǎn)為圓心,交點(diǎn)到三角形的頂點(diǎn)為半徑畫(huà)圓,畫(huà)圖如下:
∵AB=AC=8,
∴弧AB=弧AC
∵∠BAC=120°,AO⊥BC,
∴∠BAO=60°,
∵OA=OB
∴△ABO為等邊三角形,
∴OA=OB =AB=8
∴△ABC的外接圓的半徑為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①頻率是反映事件發(fā)生的頻繁程度,概率反映事件發(fā)生的可能性大小;②做n次隨機(jī)試驗(yàn),事件A發(fā)生m次,則事件A發(fā)生的概率一定等于;③頻率是不能脫離具體的n次試驗(yàn)的實(shí)驗(yàn)值,而概率是具有確定性的不依賴(lài)于試驗(yàn)次數(shù)的理論值;④頻率是概率的近似值,概率是頻率的穩(wěn)定值.其中正確的是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),分別把轉(zhuǎn)盤(pán)A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時(shí),甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時(shí),乙獲勝.如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)利用畫(huà)樹(shù)狀圖或列表的方法,求甲獲勝的概率.
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你在轉(zhuǎn)盤(pán)A上只修改一個(gè)數(shù)字使游戲公平(不需要說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C,D.若⊙O的半徑為r,△PCD的周長(zhǎng)等于3r,則tan∠APB的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿(mǎn)足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為3元/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷(xiāo)售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門(mén)規(guī)定,該品牌粽子售價(jià)不能超過(guò)進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷(xiāo)售利潤(rùn)為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連結(jié)CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)求證:PA是⊙O的切線;
(3)若FG=BF,且⊙O的半徑長(zhǎng)為3,求BD和FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點(diǎn)A,過(guò)點(diǎn)作AO的平行線交雙曲線于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(2,3),則C點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com