精英家教網(wǎng)已知l1∥l2,將一直角三角板如圖放置,若∠1=120°,則∠2的度數(shù)為( 。
分析:延長(zhǎng)直角三角板的一直角邊,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠3,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.
解答:精英家教網(wǎng)解:如圖,∵l1∥l2
∴∠3=180°-∠1=180°-120°=60°,
∴∠2=90°+60°=150°.
故選D.
點(diǎn)評(píng):本題考查了平行線的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知拋物線y=x2+4x+m(m為常數(shù))經(jīng)過點(diǎn)(0,4)
(1)求m的值;
(2)將該拋物線先向右、再向下平移得到另一條拋物線.已知這條平移后的拋物線滿足下述兩個(gè)條件:它的對(duì)稱軸(設(shè)為直線l2)與平移前的拋物線的對(duì)稱軸(設(shè)為l1)關(guān)于y軸對(duì)稱;它所對(duì)應(yīng)的函數(shù)的最小值為-8,試求平移后的拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)0<t<
52
時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點(diǎn)A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過點(diǎn)M畫一條平分三角形面積的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)數(shù)學(xué)公式時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點(diǎn)A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過點(diǎn)M畫一條平分三角形面積的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市萬州區(qū)長(zhǎng)嶺初中中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點(diǎn)A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過點(diǎn)M畫一條平分三角形面積的直線.

查看答案和解析>>

同步練習(xí)冊(cè)答案