【題目】下列命題中,是假命題的是( )
A. 過邊形一個(gè)頂點(diǎn)的所有對(duì)角線,將這個(gè)多邊形分成個(gè)三角形
B. 三角形中,到三個(gè)頂點(diǎn)距離相等的點(diǎn)是三條邊垂直平分線的交點(diǎn)
C. 三角形的中線將三角形分成面積相等的兩部分
D. 一組對(duì)邊平行另一組對(duì)邊相等的四邊形是平行四邊形
【答案】D
【解析】
根據(jù)多邊形對(duì)角線的定義對(duì)A進(jìn)行判斷;根據(jù)三角形外心的性質(zhì)對(duì)B進(jìn)行判斷;根據(jù)三角形中線定義和三角形面積公式對(duì)C進(jìn)行判斷;根據(jù)平行四邊形的判定方法對(duì)D進(jìn)行判斷.
解:A、過n邊形一個(gè)頂點(diǎn)的所有對(duì)角線,將這個(gè)多邊形分成(n-2)個(gè)三角形,所以A選項(xiàng)為真命題;
B、三角形中,到三個(gè)頂點(diǎn)距離相等的點(diǎn)是三條邊垂直平分線的交點(diǎn),所以B選項(xiàng)為真命題;
C、三角形的中線將三角形分成面積相等的兩部分,所以C選項(xiàng)為真命題;
D、一組對(duì)邊平行且相等的四邊形是平行四邊形,而一組對(duì)邊平行另一組對(duì)邊相等的四邊形可以是梯形,所以D選項(xiàng)為假命題.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生課余生活,我校準(zhǔn)備開設(shè)興趣課堂.為了了解學(xué)生對(duì)繪畫、書法、舞蹈、樂器這四個(gè)興趣小組的喜愛情況,在全校進(jìn)行隨機(jī)抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅統(tǒng)計(jì)圖(信息尚不完整),請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中樂器部分的圓心角的度數(shù);
(3)如果我校共有1000名學(xué)生參加這4個(gè)課外興趣小組,而每個(gè)教師最多只能輔導(dǎo)本組的25名學(xué)生,估計(jì)書法興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a﹣b|;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|
(2)回答下列問題:
①數(shù)軸上表示2和5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 ;
②數(shù)軸上表示x和﹣1的兩點(diǎn)A和B之間的距離是 ,如果|AB|=2,那么x為 ;
③代數(shù)式|x+1|+|x﹣2|取最小值時(shí),相應(yīng)的整數(shù)x的取值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形ABCD中,AB=12,BC=8,E、F分別為AB、CD的中點(diǎn),點(diǎn)P、Q從A. C同時(shí)出發(fā),在邊AD、CB上以每秒1個(gè)單位向D、B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(0<t<8).
(1)如圖1,連接PE、EQ、QF、PF,求證:無論t在0<t<8內(nèi)取任何值,四邊形PEQF總為平行四邊形;
(2)如圖2,連接PQ交CE于G,若PG=4QG,求t的值;
(3)在運(yùn)動(dòng)過程中,是否存在某時(shí)刻使得PQ⊥CE于G?若存在,請(qǐng)求出t的值:若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)M為CD中點(diǎn),將△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,則 α 與 β 之間的數(shù)量關(guān)系為( )
A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB和CD數(shù)軸上運(yùn)動(dòng),A開始時(shí)與原點(diǎn)重合,且.
(1)若AB=10,且B為線段AC的中點(diǎn),求線段AD的長.
(2)在(1)的條件下,線段AB和CD同時(shí)開始向右運(yùn)動(dòng),線段AB的速度為5個(gè)單位/秒,線段CD的速度為3個(gè)單位/秒,經(jīng)過t秒恰好有,求t的值.
(3)若線段AB和CD同時(shí)開始向左運(yùn)動(dòng),且線段AB的速度大于線段CD的速度,在點(diǎn)A和C之間有一點(diǎn)P(不與點(diǎn)B重合),且有,此時(shí)線段BP為定值嗎?若是請(qǐng)求出這個(gè)定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
壹娛觀察分析-中國內(nèi)地四年春節(jié)檔及節(jié)后的三個(gè)自然周(下文簡稱“節(jié)后三周”)的票房表現(xiàn).
從柱狀圖變化趨勢中,可以看出年-年春節(jié)檔和節(jié)后三周票房,都有著連續(xù)的高速增長.在年,春節(jié)檔、節(jié)后三周票房分別是億元和億元,同年增長率分別達(dá)到和.
這一迅猛的勢頭在年被打斷,春節(jié)檔和節(jié)后票房增長率分別跌至、.如果去除自年開始計(jì)入票價(jià)的左右的服務(wù)費(fèi),增幅還將進(jìn)一步縮窄.
相比于年春節(jié)檔的同比增速, 節(jié)后三周的同比增速要稍好看一些,而且是最近三年來第一次節(jié)后三周同比增幅高于春節(jié)檔同比增幅.
在萬達(dá)年業(yè)績快報(bào)中,曾提到“由于新建影院大多數(shù)位于三四線城市,以及受新開影院上座率低的拖累,公司的場均人次有所下滑,同比下降”從這一闡述中,我們可以窺見三四線城市電影市場,在增長上的短板.
根據(jù)以上材料解答下列問題:
()年中國內(nèi)地春節(jié)周票房收入為__________億元,節(jié)后三周票房收入__________億元.
()若
元.
()請(qǐng)用統(tǒng)計(jì)表將-年中國內(nèi)地春節(jié)周票房和節(jié)后三周票房成績表示出來.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com