【題目】由于2020年新型冠狀病毒的襲擊,不得不推遲開學,但停課不停學,各地都開展了網(wǎng)課.某中學為了解學生上網(wǎng)課情況,開學后從全校七年級學生中隨機抽取部分學生進行了數(shù)學科目的測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試記錄繪成如下兩幅完全不同的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次抽樣測試的學生數(shù)是多少?

2)求圖1A級扇形的圓心角∠α的度數(shù),并把圖2中的條形統(tǒng)計圖補充完成;

3)該中學七年級共有1200名學生,如果全部參加這次數(shù)學科目測試,請估計不合格的人數(shù).

【答案】140人;(2144°,補全圖形見解析;(360

【解析】

1)根據(jù)B級的人數(shù)與所占的百分比進行求解;

2)將A級所占的百分比乘以即可求出α的度數(shù),結(jié)合(1)求出C級的人數(shù),補全條形統(tǒng)計圖即可;

3)將1200乘以D級所占的百分比即為所求.

解:(1)本次抽樣測試的學生數(shù)(人);

2,C級調(diào)查人數(shù)(人),

補全條形統(tǒng)計圖:

3(人),

所以不合格的人數(shù)為60人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,AD=,在邊CD上有一點E,使EB平分∠AEC.若P為BC邊上一點,且BP=2CP,連接EP并延長交AB的延長線于F.給出以下五個結(jié)論:

①點B平分線段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.

其中正確結(jié)論的序號是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.

)解不等式,得   

)解不等式,得   

)把不等式的解集在數(shù)軸上表示出來.

)原不等式組的解集為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,∠BAC54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)是( 。

A. 106°B. 108°C. 110°D. 112°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx+ax軸交于點A4,0),與y軸交于點B,拋物線yx2+bx+c經(jīng)過點A,B.點Mm0)為x軸上一動點,過點M且垂直于x軸的直線分別交直線AB及拋物線于點P,N

1)填空:點B的坐標為   ,拋物線的解析式為   ;

2)當點M在線段OA上運動時(不與點OA重合),

①當m為何值時,線段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時m的值;

3)若拋物線上有且只有三個點N到直線AB的距離是h,請直接寫出此時由點OB,N,P構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,.點P是平面內(nèi)不與點AC重合的任意一點.連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)α得到線段DP,連接ADBD,CP

1)觀察猜想

如圖1,當時,的值是   ,直線BD與直線CP相交所成的較小角的度數(shù)是   

2)類比探究

如圖2,當時,請寫出的值及直線BD與直線CP相交所成的小角的度數(shù),并就圖2的情形說明理由.

3)解決問題

時,若點EF分別是CA,CB的中點,點P在直線EF上,請直接寫出點C,PD在同一直線上時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.

1)如圖1,在ABC中,AB=ACADABC的角平分線,E,F分別是BD,AD上的點.求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在5×4的方格紙中,AB在格點上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點上.

3)如圖3,在(1)的條件下,取EF中點M,連結(jié)DM并延長交AB于點Q,延長EFAC于點N.若NAC的中點,DE=2BE,QB=6,求鄰余線AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將菱形紙片折疊,使點落在邊的點處,折痕為,若,則的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的切線,的直徑,連接于點,在上截取,在中,連接,交于點

1)求證:;

2)連接,當    時,四邊形是菱形.

查看答案和解析>>

同步練習冊答案