【題目】如圖,在樓AB與樓CD之間有一旗桿EF,從AB頂部A點(diǎn)處經(jīng)過旗桿頂部E點(diǎn)恰好看到樓CD的底部D點(diǎn),且俯角為45°,從樓CD頂部C點(diǎn)處經(jīng)過旗桿頂部E點(diǎn)恰好看到樓AB的G點(diǎn),BG=1米,且俯角為30°,己知樓AB高20米,求旗桿EF的高度.(結(jié)果精確到1米)

【答案】8米

【解析】根據(jù)題意求出∠BAD=∠ADB=45°,進(jìn)而根據(jù)等腰直角三角形的性質(zhì)求得FD,在Rt△GEH中,利用特殊角的三角函數(shù)值分別求出BF,即可求得PG,在Rt△AGP中,繼而可求出AB的長(zhǎng)度.

過點(diǎn)G于點(diǎn)P,與EF相交于點(diǎn)H.設(shè)EF的長(zhǎng)為米,

由題意可知, 米, 米,

又∵∠BAD=ADB=45°,

FD=EF= 米,AB=BD=20,

Rt△GEH中,∠EGH=30°

tanEGH=,

,

米,

BD=BF+FD=GH+FD,

解得, 8,

答:旗桿EF的高度約為8.

“點(diǎn)睛”本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識(shí)求解相關(guān)線段的長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距216千米,甲、乙分別在A、B兩地,若甲騎車的速度為15千米/時(shí),乙騎車的速度為12千米/時(shí)。
(1)甲、乙同時(shí)出發(fā),背向而行,問幾小時(shí)后他們相距351千米?
(2)甲、乙相向而行,甲出發(fā)三小時(shí)后乙才出發(fā),問乙出發(fā)幾小時(shí)后兩人相遇?
(3)甲、乙相向而行,要使他們相遇于AB的中點(diǎn),乙要比甲先出發(fā)幾小時(shí)?
(4)甲、乙同時(shí)出發(fā),相向而行,甲到達(dá)B處,乙到達(dá)A處都分別立即返回,幾小時(shí)后相遇?相遇地點(diǎn)距離A有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a與b互為倒數(shù),c與d互為相反數(shù),x的絕對(duì)值是3,求2(ab)2016+c+d+2x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用一副三角板上已知度數(shù)的角,不能畫出的角是(
A.15°
B.135°
C.165°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,點(diǎn)O是對(duì)角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測(cè)AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P在DB的長(zhǎng)延長(zhǎng)線上時(shí),請(qǐng)將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請(qǐng)寫出相應(yīng)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若規(guī)定“*”的運(yùn)算法則為:a*b=ab﹣1,則2*3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:9a3﹣ab2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.2a+3b=5ab
B.2a﹣3b=﹣1
C.2a2b﹣2ab2=0
D.2ab﹣2ba=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的一條邊長(zhǎng)是12cm,那么它的兩條對(duì)角線的長(zhǎng)可能是(  )

A. 8cm和16cm B. 10cm和16cm C. 8cm和14cm D. 8cm和12cm

查看答案和解析>>

同步練習(xí)冊(cè)答案