【題目】已知關(guān)于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個不相等實數(shù)根x1,x2
(1)求實數(shù)m的取值范圍;
(2)若x12+x22=x1x2+3時,求實數(shù)m的值.
【答案】(1) m<﹣;(2)-1
【解析】
(1)由方程有兩個不相等實數(shù)根結(jié)合根的判別式即可得出關(guān)于m的一元一次不等式,解不等式即可得出m的取值范圍;
(2)根據(jù)根與系數(shù)的關(guān)系找出x1+x2=2m-1、x1x2=m2+1,結(jié)合x12+x22=x1x2+3即可得出關(guān)于m的一元二次方程,解方程即可得出m的值,結(jié)合(1)的結(jié)論即可得出m的值.
(1)∵關(guān)于x的方程x2﹣(2m﹣1)x+m2+1=0有兩個不相等實數(shù)根x1,x2,
∴△=(2m﹣1)2﹣4(m2+1)=﹣4m﹣3>0,
∴m<﹣ .
(2)∵x1+x2=2m﹣1,x1x2=m2+1,
∴x12+x22=x1x2+3,
(x1+x2)2=3x1x2+3,
(2m﹣1)2=3(m2+1)+3,
m2﹣4m﹣5=0,
解得:m=5或m=﹣1,
∵m<﹣,
∴m=﹣1.
故實數(shù)m的值是﹣1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的菱形ABCD中,BD=2,E、F分別是AD,CD上的動點(包含端點),且AE+CF=2,則線段EF長的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,點D為BC邊上一點(不與點B,點C重合),連結(jié)AD,點E、點F分別為AB、AC上的點,且EF∥BC,交AD于點G,連結(jié)BG,并延長BG交AC于點H.已知=2,①若AD為BC邊上的中線,的值為;②若BH⊥AC,當(dāng)BC>2CD時,<2sin∠DAC.則( )
A. ①正確;②不正確B. ①正確;②正確
C. ①不正確;②正確D. ①不正確;②正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一張長方形紙片,AB=CD=a,AD=BC=b(a<b<2a).
將這張紙片沿著過點A的折痕翻折,使點B落在AD邊上的點F,折痕交BC于點E,將折疊后的紙片再次沿著另一條過點A的折痕翻折,點E恰好與點D重合,此時折痕交DC于點G.
(1)在圖中確定點F、點E和點G的位置;
(2)連接AE,則∠EAB= °;
(3)用含有a、b的代數(shù)式表示線段DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2kx+3k+4.
(1)拋物線經(jīng)過原點時,求k的值.
(2)頂點在x軸上時,求k的值;
(3)頂點在y軸上時,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當(dāng) AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,連接AE.
求證:(1)BF=DF;
(2)AE∥BD;
(3)若AB=6,AD=8,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com