【題目】形狀與拋物線y=2x2﹣3x+1的圖象形狀相同,但開口方向不同,頂點(diǎn)坐標(biāo)是(0,﹣5)的拋物線的關(guān)系式為

【答案】y=﹣2x2﹣5
【解析】解:∵形狀與拋物線y=2x2﹣3x+1的圖象形狀相同,但開口方向不同,
設(shè)拋物線的關(guān)系式為y=﹣2(x﹣h)2+k,
將頂點(diǎn)坐標(biāo)是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.
∴拋物線的關(guān)系式為y=﹣2x2﹣5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三角形的兩個(gè)外角的和是270°,那么這個(gè)三角形一定是 (  )

A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在圖①中以P為頂點(diǎn)畫∠P,使∠P的兩邊分別和∠1的兩邊垂直;

(2)量一量∠P和∠1的度數(shù),它們之間的數(shù)量關(guān)系是        ;

(3)同樣在圖②和圖③中以P為頂點(diǎn)作∠APB,使∠APB的兩邊分別和∠1的兩邊垂直,分別寫出圖②和圖③中∠APB和∠1之間的數(shù)量關(guān)系(不要求寫出理由).

圖②:                ,

圖③:                ;

(4)由上述三種情形可以得到一個(gè)結(jié)論:如果一個(gè)角的兩邊分別和另一個(gè)角的兩邊垂直,那么這兩個(gè)角    (不要求寫出理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)半徑為18 cm的圓,從中心挖去一個(gè)正方形,當(dāng)挖去的正方形的邊長(zhǎng)由小變大時(shí),剩下部分的面積也隨之發(fā)生變化.

(1)若挖去的正方形邊長(zhǎng)為x(cm),剩下部分的面積為y(cm2),yx之間的關(guān)系式是什么?

(2)當(dāng)挖去的正方形的邊長(zhǎng)由1 cm變化到9 cm時(shí),剩下部分的面積由____變化到____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤SCEF=2SABE
其中正確結(jié)論有( )個(gè).

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣溫由﹣2℃上升3℃后是( 。
A.﹣5℃
B.1℃
C.5℃
D.3℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對(duì)稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2 , 并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過點(diǎn)N作NP⊥AD于點(diǎn)P,連接AC交NP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)AM= , AP= . (用含t的代數(shù)式表示)
(2)當(dāng)四邊形ANCP為平行四邊形時(shí),求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時(shí)刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由
②使四邊形AQMK為正方形,則AC等于.

查看答案和解析>>

同步練習(xí)冊(cè)答案