【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3個(gè)單位/秒的速度沿著數(shù)軸負(fù)方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;動(dòng)點(diǎn)P對(duì)應(yīng)的數(shù)是 (用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),且點(diǎn)P, Q同時(shí)出發(fā)
①若動(dòng)點(diǎn)Q沿著數(shù)軸正方向勻速運(yùn)動(dòng),多少秒時(shí)點(diǎn)P與點(diǎn)Q相遇?
②若動(dòng)點(diǎn)Q沿著數(shù)軸負(fù)方向勻速運(yùn)動(dòng),多少秒時(shí)點(diǎn)P與點(diǎn)Q相距4個(gè)單位?
【答案】(1),;(2)①5,② 8秒或12秒.
【解析】
(1)由數(shù)軸的性質(zhì)和AB的距離可計(jì)算B表示的數(shù),點(diǎn)在數(shù)軸上運(yùn)動(dòng)左減右加的原則列出代數(shù)式。
(2)① 動(dòng)點(diǎn)在數(shù)軸上相反方向運(yùn)動(dòng)時(shí)相遇是速度和乘時(shí)間等于兩點(diǎn)距離
②動(dòng)點(diǎn)在數(shù)軸上相同方向運(yùn)動(dòng)時(shí)屬于追趕問題,分兩種情況討論
(1),
(2)①由題意得:
解得
答:5秒時(shí)點(diǎn)P與點(diǎn)Q相遇·
②第一種情況:點(diǎn)P追上點(diǎn)Q前
解得
第二種情況:點(diǎn)P追上點(diǎn)Q后
解得
答:經(jīng)過8秒或12秒時(shí)點(diǎn)P與點(diǎn)Q相距4個(gè)單位。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABP是等腰三角形,AB=BP,以AB為直徑的⊙O交AP于點(diǎn)D,交BP于點(diǎn)C,連接BD交AC于點(diǎn)G,直線MN過點(diǎn)A,且∠PAM= ∠ABP.
(1)試說明直線MN是⊙O的切線.
(2)過D作DE⊥AB于E,交AC于F,求證:△DFG是等腰三角形.
(3)連結(jié)FO,過點(diǎn)O作OQ⊥FO交BP于點(diǎn)Q,連結(jié)FQ,求證:FQ2=AF2+BQ2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y= x﹣ 與矩形ABCO的邊OC、BC分別交于點(diǎn)E、F,已知OA=3,OC=4,則△CEF的面積是( 。
A.6
B.3
C.12
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD>BC,BC=6 cm,AD=9 cm.點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),點(diǎn)P以1 cm/s的速度由點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q以2 cm/s的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P,Q運(yùn)動(dòng)_______s時(shí),直線QP將四邊形截出一個(gè)平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動(dòng)點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動(dòng),點(diǎn)Q沿C→D→A方向做勻速運(yùn)動(dòng),當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求CD的長;
(2)若點(diǎn)P以1cm/s速度運(yùn)動(dòng),點(diǎn)Q以2 cm/s的速度運(yùn)動(dòng),連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s),求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動(dòng)過程中出現(xiàn)PQ∥DC,請(qǐng)你直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)0,OE平分∠BOD,OF平分∠COE.∠BOF=30°,求:(1)∠EOD的度數(shù);(2)∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示已知,,OM平分,ON平分;
(1);
(2)如圖∠AOB=900,將OC繞O點(diǎn)向下旋轉(zhuǎn),使∠BOC=,仍然分別作∠AOC,∠BOC的平分線OM,ON,能否求出∠MON的度數(shù),若能,求出其值,若不能,試說明理由.
(3),,仍然分別作∠AOC,∠BOC的平分線OM,ON,能否求出∠MON的度數(shù),若能,求的度數(shù);并從你的求解中看出什么什么規(guī)律嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放在平面直角坐標(biāo)系中的圓O的半徑為3,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子,它有四個(gè)頂點(diǎn),各頂點(diǎn)數(shù)分別是1,2,3,4,每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的點(diǎn)數(shù)作為直角坐標(biāo)系中點(diǎn)P的坐標(biāo)(第一次的點(diǎn)數(shù)為橫坐標(biāo),第二次的點(diǎn)數(shù)為縱坐標(biāo)).
(1)若第一次骰子朝上的點(diǎn)數(shù)為1,第二次骰子朝上的點(diǎn)數(shù)為2,此時(shí)點(diǎn)P(填“是”或“否”)落在圓O內(nèi)部;
(2)請(qǐng)你用樹狀圖或列表的方法表示出P點(diǎn)坐標(biāo)的所有可能結(jié)果;
(3)求點(diǎn)P落在圓O面上(含內(nèi)部與邊界)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A +∠B +∠C +∠D +∠E +∠F等于( )
A. 180° B. 360° C. 540° D. 720°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com