【題目】如圖,在半徑為,圓心角等于45°的扇形AOB內(nèi)部作一個矩形CDEF,使點C在OA上,點D、E在OB上,點F在弧AB上,且DE=2CD,則:
(1)弧AB的長是(結(jié)果保留π)________;
(2)圖中陰影部分的面積為(結(jié)果保留π)________.
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接體育理化加試,九(2)班同學到某體育用品商店采購訓練用球,已知購買3個A品牌足球和2個B品牌足球需付210元;購買2個A品牌足球和1個B品牌足球需付費130元.(優(yōu)惠措施見海報)
(1)求A,B兩品牌足球的單價各為多少元;
(2)為享受優(yōu)惠,同學們決定購買一次性購買足球60個,若要求A品牌足球的數(shù)量不低于B品牌足球數(shù)量的3倍,請你設(shè)計一種付費最少的方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點,BC⊥x軸于點C,若△OBC的面積為2,且A點的縱坐標為4,B點的縱坐標為1.
(1)求反比例函數(shù)、一次函數(shù)的表達式及直線AB與x軸交點E的坐標;
(2)已知點D(t,0)(t>0),過點D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點P,與反比函數(shù)上的圖像相交于點Q,若點P位于點Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C:y1=﹣x2+bx+4.
(1)如圖,拋物線與x軸相交于兩點(1﹣m,0)、(1+m,0).
①求b的值;
②當n≤x≤n+1時,二次函數(shù)有最大值為3,求n的值.
(2)已知直線l:y2=2x﹣b+9,當x≥0時,y1≤y2恒成立,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,O為BD中點,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE并延長交CD于F,連接BD分別交CE、AF于G、H,下列結(jié)論:①;②;③;④;⑤:,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接.
(1)如圖1,求的度數(shù);
(2)如圖2,點分別為上一點,并且,連接,交點為G,R為上一點,連接與交于點H,,求證:;
(3)如圖3,在(2)的條件下,,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AC=BC=,直線L過AB中點O,過點A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com