精英家教網(wǎng)如圖,已知一個正比例函數(shù)與一個反比例函數(shù)的圖象在第一象限的交點為A(2,4).
(1)求正比例函數(shù)與反比例函數(shù)的解析式;
(2)平移直線OA,平移后的直線與x軸交于點B,與反比例函數(shù)的圖象在第一象限的交點為C(4,n).求B、C兩點的距離.
分析:(1)分別設出一次函數(shù)解析式和反比例函數(shù)的解析式,代入點A的坐標,即可得出各解析式.
(2)利用已知的反比例函數(shù)的解析式,可得出n的值;設平移后的一次函數(shù)解析式,代入點C的坐標,即可得出平移后的函數(shù)式,練力量兩函數(shù)式,求解方程組,即可得出點B的坐標,利用兩點間的距離公式,即可得出B、C的距離.
解答:解:(1)設正比例函數(shù)的解析式為y=k1x,
反比例函數(shù)的解析式為y=
k2
x
(1分)
根據(jù)題意得:4=k1×2,4=
k2
2
(2分)
解得:k1=2,k2=8
所以,正比例函數(shù)的解析式為y=2x,
反比例函數(shù)的解析式為y=
8
x
.(2分)

(2)因為點C(4,n)在反比例函數(shù)y=
8
x
的圖象上
所以,n=
8
4
=2

即點C的坐標為(4,2)(1分)
因為AO∥BC,所以可設直線BC的表達式為y=2x+b(1分)
又點C的坐標為(4,2)在直線BC上
所以,2=2×4+b,
解得b=-6,
即直線BC的表達式為y=2x-6(1分)
直線BC與x軸交于點B,設點B的坐標為(m,0)
可以得:0=2m-6,
解得m=3,
所以點B的坐標為(3,0)(1分)
BC=
5
(1分)
點評:本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=
k
x
中k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y =
k1x
和正比例函數(shù)y=k2x的圖象的一個交點為A(2,-1).
(1)求反比例函數(shù)和正比例函數(shù)的解析式.
(2)求反比例函數(shù)和正比例函數(shù)的圖象的另一個交點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知一個正比例函數(shù)與一個反比例函數(shù)的圖象在第一象限的交點為A(2,4).
(1)求正比例函數(shù)與反比例函數(shù)的解析式;
(2)平移直線OA,平移后的直線與x軸交于點B,與反比例函數(shù)的圖象在第一象限的交點為C(4,n).求B、C兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年福建省泉州市南安市初中畢業(yè)班數(shù)學綜合練習卷(三)(解析版) 題型:解答題

如圖,已知一個正比例函數(shù)與一個反比例函數(shù)的圖象在第一象限的交點為A(2,4).
(1)求正比例函數(shù)與反比例函數(shù)的解析式;
(2)平移直線OA,平移后的直線與x軸交于點B,與反比例函數(shù)的圖象在第一象限的交點為C(4,n).求B、C兩點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年上海市寶山區(qū)嘉定區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

如圖,已知一個正比例函數(shù)與一個反比例函數(shù)的圖象在第一象限的交點為A(2,4).
(1)求正比例函數(shù)與反比例函數(shù)的解析式;
(2)平移直線OA,平移后的直線與x軸交于點B,與反比例函數(shù)的圖象在第一象限的交點為C(4,n).求B、C兩點的距離.

查看答案和解析>>

同步練習冊答案