【題目】2019年沈陽國際馬拉松賽事設(shè)有“馬拉松”(A),“半程馬拉松”(B),“10公里跑”(C),“迷你馬拉松”(D)四個項目,小明和小亮參加了該賽事的志愿者服務(wù)工作,組委會將志愿者隨機分配到四個項目組,被分配到每個項目組的機會是相同的.
(1)小明被分配到“馬拉松”(A)項目組的概率為 ;
(2)利用畫樹狀圖或列表法求小明和小亮被分配到同一個項目組進(jìn)行志愿服務(wù)的概率.(項目名稱可用字母表示)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.動點P從點A開始沿邊AC向點C以2cm/s的速度移動;動點Q從點C開始沿邊CB向點B以4cm/s的速度移動.如果P,Q兩點同時出發(fā).
(1)經(jīng)過幾秒,△PCQ的面積為32cm2?
(2)若設(shè)△PCQ的面積為S,運動時間為t,請寫出當(dāng)t為何值時,S最大,并求出最大值;
(3)當(dāng)t為何值時,以P,C,Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】活動1:
在一只不透明的口袋中裝有標(biāo)號為1,2,3的3個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭颍、乙、丙三位同學(xué)按丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,請你通過畫樹狀圖或列表計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
活動2:
在一只不透明的口袋中裝有標(biāo)號為1,2,3,4的4個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,請你對甲、乙、丙三名同學(xué)規(guī)定一個摸球順序: → → ,他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,通過畫樹狀圖或列表求每位同學(xué)勝出的概率分別是多少.
猜想:
在一只不透明的口袋中裝有標(biāo)號為1,2,3,…,(為正整數(shù))的個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,甲、乙、丙三名同學(xué)按任意順序從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:直接寫出這三名同學(xué)每人勝出的概率之間的大小關(guān)系.
由此你能得到什么活動經(jīng)驗?(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x﹣m)2+4(m>0)的頂點為A,與直線x=相交于點B,點A關(guān)于直線x=的對稱點為C.
(1)若拋物線y=﹣(x﹣m)2+4(m>0)經(jīng)過原點,求m的值.
(2)點C的坐標(biāo)為 .用含m的代數(shù)式表示點B到直線AC的距離為 .
(3)將y=﹣(x﹣m)2+4(m>0,且x≥)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x=的對稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M.
①當(dāng)圖象M與x軸恰好有三個交點時,求m的值.
②當(dāng)△ABC為等腰直角三角形時,直接寫出圖象M所對應(yīng)的函數(shù)值小于0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A(0,4),B(1,m)都在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點B.
(1)直接寫出m和k的值;
(2)如圖2,將線段AB向右平移n個單位長度(n≥0),得到對應(yīng)線段CD,連接AC,BD.
①在平移過程中,若反比例函數(shù)圖象與線段AB有交點,求n的取值范圍;
②在平移過程中,連接BC,若△BCD是直角三角形,請直接寫出所有滿足條件n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角中,,的垂直平分線交于點,交于點,交于點,連接、.
(1)求證:;
(2)求證:四邊形是菱形.
(3)當(dāng)滿足什么條件時,四邊形是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并解答問題:
楊輝和他的一個數(shù)學(xué)問題
我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.
請你用學(xué)過的知識解決這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com