【題目】如圖所示,四邊形ABCD是矩形,把△ACD沿AC折疊到△ACD′,AD′與BC交于點(diǎn)E,若AD=4,DC=3,求BE的長.
【答案】解:∵四邊形ABCD為矩形, ∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,
∵△ACD沿AC折疊到△ACD′,AD′與BC交于點(diǎn)E,
∴∠DAC=∠D′AC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠D′AC=∠ACB,
∴AE=EC,
設(shè)BE=x,則EC=4﹣x,AE=4﹣x,
在Rt△ABE中,∵AB2+BE2=AE2 ,
∴32+x2=(4﹣x)2 , 解得x= ,
即BE的長為
【解析】根據(jù)矩形性質(zhì)得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根據(jù)折疊性質(zhì)得∠DAC=∠D′AC,而∠DAC=∠ACB,則∠D′AC=∠ACB,所以AE=EC, 設(shè)BE=x,則EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可計算出BE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解翻折變換(折疊問題)的相關(guān)知識,掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF,CD相交于點(diǎn)O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù).(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且AE=EF=FA.下列結(jié)論:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF , 其中正確的是①②③⑤(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與 交于點(diǎn)A,過點(diǎn)A作軸的平行線,分別交兩條拋物線于點(diǎn)B、C.則以下結(jié)論:① 無論取何值,的值總是正數(shù);② ;③ 當(dāng)時,;④ 當(dāng)>時,0≤<1;⑤ 2AB=3AC.其中正確結(jié)論的編號是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)取何值時,反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com