【題目】如圖,在矩形ABCD中,AB=5,AD=12,以BC為斜邊在矩形外部作直角三角形BEC,F(xiàn)為CD的中點(diǎn),則EF的最大值為(
A.
B.
C.
D.

【答案】C
【解析】解:由題意知∠BEC=90°,

∴點(diǎn)E在以BC為直徑的⊙O上,如圖所示:

由圖可知,連接FO并延長(zhǎng)交⊙O于點(diǎn)E′,

此時(shí)E′F最長(zhǎng),

∵CO= BC=6、FC= CD= ,

∴OF= = = ,

則E′F=OE′+OF=6+ = ,

故選:C.

【考點(diǎn)精析】通過靈活運(yùn)用矩形的性質(zhì)和圓周角定理,掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( 。
A.x2x3=x6
B.(x32=x5
C.(xy23=x3y6
D.x6÷x3=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于Q.
(1)如圖1,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系;并加以證明;
(2)如圖2,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,請(qǐng)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(0)的圖象如圖,給出下列四個(gè)結(jié)論:4ac﹣b20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中結(jié)論正確的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O的半徑為5cm,點(diǎn)A到圓心O的距離OA=3cm,則點(diǎn)A與圓O的位置關(guān)系為(  )
A.點(diǎn)A在圓上
B.點(diǎn)A在圓內(nèi)
C.點(diǎn)A在圓外
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠A與∠B互余,若∠A=20°15′,則∠B的度數(shù)為___°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)角的補(bǔ)角加上24,恰好等于這個(gè)角的5倍,求這個(gè)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了在九月份迎接高一年級(jí)的新生,決定將學(xué)生公寓樓重新裝修,現(xiàn)學(xué)校招用了甲、乙兩個(gè)工程隊(duì).若兩隊(duì)合作,8天就可以完成該項(xiàng)工程;若由甲隊(duì)先單獨(dú)做3天后,剩余部分由乙隊(duì)單獨(dú)做需要18天才能完成.

(1)求甲、乙兩隊(duì)工作效率分別是多少?

(2)甲隊(duì)每天工資3000元,乙隊(duì)每天工資1400元,學(xué)校要求在12天內(nèi)將學(xué)生公寓樓裝修完成,若完成該工程甲隊(duì)工作m天,乙隊(duì)工作n天,求學(xué)校需支付的總工資w(元)與甲隊(duì)工作天數(shù)m(天)的函數(shù)關(guān)系式,并求出m的取值范圍及w的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,垂足為C,AC=4,BC=3 ,將線段AC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到線段AD,連接DC,DB.
(1)線段DC=
(2)求線段DB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案