【題目】等腰三角形一腰上的高與另一腰的夾角是50,則這個三角形的底角是( )

A. 70 B. 20 C. 70或20 D. 40或140

【答案】C

【解析】分兩種情況討論如下

(1)當該等腰三角形是銳角三角形時,如圖1,△ABC中,AB=AC,BD⊥AC于點D,∠ABD=50°,求∠C的度數(shù).

BD⊥AC于點D,

∴∠ADB=90°

∵∠ABD=50°,

∴∠A=90°-50°=40°

∵AB=AC,

∴∠C=;

(2)當該等腰三角形是鈍角三角形時,如圖2,△ABC中,AB=AC,BD⊥AC于點D,∠ABD=50°,求∠C的度數(shù).

BD⊥AC于點D,

∴∠ADB=90°,

∵∠ABD=50°,

∴∠BAD=90°-50°=40°,

∴∠BAC=180°-40°=140°,

∵AB=AC

∴∠C=;

綜上所述該等腰三角形的底角為70°或20°.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過P作PEAB,通過平行線性質,可得APC=50°+60°=110°.

問題遷移:

(1)如圖3,ADBC,點P在射線OM上運動,當點P在A、B兩點之間運動時,ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關系?請說明理由;

(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出CPD、α、β間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式是能用乘法公式計算.

即:原式=(2-1) (2+1)(22+1)(24+1)(28+1)(216+1)=232-1.

請用上述方法算出(5+1) (52+1)(54+1)(58+1)(516+1) (532+1)的值為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點E,DFAC于點F,連接EFAD于點G

1)求證:AD垂直平分EF

2)若BAC=60°,猜測DGAG間有何數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在第一象限內作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖像可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是過點(1,0)且平行于y軸的直線,若點P(4,0)在該拋物線上,則4a﹣2b+c的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經過點B.

(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內,連接AM、BM,設點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉得到直線l′,當直線l′與直線AM′重合時停止旋轉,在旋轉過程中,直線l′與線段BM′交于點C,設點B、M′到直線l′的距離分別為d1、d2 , 當d1+d2最大時,求直線l′旋轉的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在算式x·x5,x7y÷xy,(x2y3)÷y3xn6÷xn中,結果為x6的算式個數(shù)是(  )

A.1B.2

C.3D.4

查看答案和解析>>

同步練習冊答案