【題目】(題文)如圖所示,二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B,Cx軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi),且點(diǎn)A在點(diǎn)D的左側(cè).

(1)求二次函數(shù)的解析式;

(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長(zhǎng)p關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;

(3)是否存在這樣的矩形ABCD,使它的周長(zhǎng)為9?試證明你的結(jié)論.

【答案】(1)(2)p=-x2-4x+4,其中-2<x<2(3)不存在

【解析】

試題 (1)由頂點(diǎn)坐標(biāo)(0,2)可直接代入y=﹣mx2+4m,求得m=,即可求得拋物線的解析式;(2)由圖及四邊形ABCD為矩形可知ADx軸,長(zhǎng)為2x的據(jù)對(duì)值,AB的長(zhǎng)為A點(diǎn)的總坐標(biāo),由xy的關(guān)系,可求得p關(guān)于自變量x的解析式,因?yàn)榫匦?/span>ABCD在拋物線里面,所以x小于0,大于拋物線與x負(fù)半軸的交點(diǎn);(3)由(2)得到的p關(guān)于x的解析式,可令p=9,求x的方程,看x是否有解,有解則存在,無(wú)解則不存在,顯然不存在這樣的p

試題解析:

(1)∵二次函數(shù)y=﹣mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),

∴4m=2,

m=,

拋物線的解析式為:y=﹣x2+2;

(2)∵A點(diǎn)在x軸的負(fù)方向上坐標(biāo)為(xy),四邊形ABCD為矩形,BCx軸上,

ADx軸,

拋物線關(guān)于y軸對(duì)稱(chēng),

DC點(diǎn)關(guān)于y軸分別與A、B對(duì)稱(chēng).

AD的長(zhǎng)為2xAB長(zhǎng)為y,

周長(zhǎng)p=2y+4x=2(﹣x2+2)﹣4x=﹣(x+2)2+8.

A在拋物線上,且ABCD組成矩形,

x<2,

四邊形ABCD為矩形,

y>0,

x>﹣2.

p=﹣(x+2)2+8,其中﹣2<x<2.

(3)不存在,

證明:假設(shè)存在這樣的p,即:

9=﹣(x+2)2+8,

解此方程得:x無(wú)解,所以不存在這樣的p

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為3的等邊ABC的邊AB上一點(diǎn)P,作PEAC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連接PQ交邊AC于點(diǎn)D,則DE的長(zhǎng)為( )

A. B. C. D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.

(1)能?chē)擅娣e是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)含有多個(gè)字母的式子中,如果任意交換兩個(gè)字母的位置,式子的值都不變,這樣的式子就叫做對(duì)稱(chēng)式.例如: , , ,

含有兩個(gè)字母 的對(duì)稱(chēng)式的基本對(duì)稱(chēng)式是,像 等對(duì)稱(chēng)式都可以用表示,例如:

請(qǐng)根據(jù)以上材料解決下列問(wèn)題:

)式子,中,屬于對(duì)稱(chēng)式的是__________(填序號(hào)).

)已知

,求對(duì)稱(chēng)式的值.

,直接寫(xiě)出對(duì)稱(chēng)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)共有400名學(xué)生,為了解該年級(jí)學(xué)生上學(xué)的交通方式,從中隨機(jī)抽取100名學(xué)生進(jìn)行問(wèn)卷調(diào)查,并對(duì)調(diào)查數(shù)據(jù)進(jìn)行整理、描述和分析,下面給出了部分信息

A.不同交通方式學(xué)生人數(shù)分布統(tǒng)計(jì)圖如下:

B.采用公共交通方式單程所花費(fèi)時(shí)間(分鐘)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);

根據(jù)以上信息,完成下列問(wèn)題:

1)補(bǔ)全頻數(shù)分布直方圖;

2)根據(jù)不同交通方式學(xué)生人數(shù)所占的百分比,算出“私家車(chē)方式”對(duì)應(yīng)扇形的圓心角是度_____

3)請(qǐng)你估計(jì)全年級(jí)乘坐公共交通上學(xué)有_____人,其中單程不少于60分鐘的有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P,Q兩點(diǎn)給出如下定義:若點(diǎn)Px,y軸的距離中的最大值等于點(diǎn)Qx,y軸的距離中的最大值,則稱(chēng)P,Q兩點(diǎn)為等距點(diǎn)圖中的P,Q兩點(diǎn)即為等距點(diǎn)”.

1)已知點(diǎn)A的坐標(biāo)為.①在點(diǎn)中,為點(diǎn)A等距點(diǎn)的是________;②若點(diǎn)B的坐標(biāo)為,且A,B兩點(diǎn)為等距點(diǎn),則點(diǎn)B的坐標(biāo)為________.

2)若兩點(diǎn)為等距點(diǎn),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的位置如圖,A(0,0),B(6,0),D(0,4)

(1) 根據(jù)圖形直接寫(xiě)出點(diǎn)C的坐標(biāo);

(2) 已知直線m經(jīng)過(guò)點(diǎn)P(0,6)且把矩形ABCD分成面積相等的兩部分,請(qǐng)只用直尺準(zhǔn)確地畫(huà)出直線m,并求該直線m的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市從 2018 1 1 日開(kāi)始,禁止燃油助力車(chē)上路,于是電動(dòng)自 行車(chē)的市場(chǎng)需求量日漸增多某商店計(jì)劃最多投入 8 萬(wàn)元購(gòu)進(jìn) A、B 兩種型號(hào)的 電動(dòng)自行車(chē)共 30 輛,其中每輛 B 型電動(dòng)自行車(chē)比每輛 A 型電動(dòng)自行車(chē)多 500 元.用 5 萬(wàn)元購(gòu)進(jìn)的 A 型電動(dòng)自行車(chē)與用 6 萬(wàn)元購(gòu)進(jìn)的 B 型電動(dòng)自行車(chē)數(shù)量一 樣.

(1)求 A、B 兩種型號(hào)電動(dòng)自行車(chē)的進(jìn)貨單價(jià);

(2)若 A 型電動(dòng)自行車(chē)每輛售價(jià)為 2800 ,B 型電動(dòng)自行車(chē)每輛售價(jià)為 3500 元,設(shè)該商店計(jì)劃購(gòu)進(jìn) A 型電動(dòng)自行車(chē) m 輛,兩種型號(hào)的電動(dòng)自行車(chē)全部銷(xiāo)售 后可獲利潤(rùn) y 元.寫(xiě)出 y m 之間的函數(shù)關(guān)系式;

(3)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案