【題目】如圖,已知□ABCD中,E為AD的中點(diǎn),CE的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)試說(shuō)明線(xiàn)段CD與FA相等的理由;
(2)若使∠F=∠BCF,□ABCD的邊長(zhǎng)之間還需再添加一個(gè)什么條件?請(qǐng)你補(bǔ)上這個(gè)條件,并說(shuō)明你的理由(不要再增添輔助線(xiàn)).
【答案】見(jiàn)解析
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),-就可證明CD∥AB,∠CDA=∠DAF,又已知DE=AE,∠CED=∠AEF,符合全等三角形的判定中的ASA,即證△CDE≌△AEF,所以CD=AF.
(2)在第(1)問(wèn)的基礎(chǔ)上,若使∠F=∠BCF,逆推就必須BC=BF,繼而推出BC=2BA,即為所求.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB.
又∵CE的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,
∴∠CDA=∠DAF.
∵E是AD中點(diǎn),
∴DE=AE.
∵∠CED=∠AEF,
∴△CDE≌△AEF.
∴CD=AF.
(2)要使∠F=∠BCF,需平行四邊形ABCD的邊長(zhǎng)之間是2倍的關(guān)系,即BC=2AB,
證明:∵由(1)知,△CED≌△FEA,
∴CD=AF.
又∵四邊形ABCD是平行四邊形,
∴CD=AB.
∴AB=AF,即BF=2AB.
∵BC=2AB.
∴BF=BC,
∴∠F=∠BCF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線(xiàn)交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角邊長(zhǎng)為6的等腰Rt△AOC放在如圖所示的平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C、A分別在x、y軸的正半軸上,一條拋物線(xiàn)經(jīng)過(guò)點(diǎn)A、C及點(diǎn)B(﹣3,0).
(1)求該拋物線(xiàn)的解析式;
(2)若點(diǎn)P是線(xiàn)段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作AB的平行線(xiàn)交AC于點(diǎn)E,連接AP,當(dāng)△APE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)在第一象限內(nèi)的該拋物線(xiàn)上是否存在點(diǎn)G,使△AGC的面積與(2)中△APE的最大面積相等?若存在,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(1,3)、點(diǎn)B(m,1)是一次函數(shù)的圖像上的兩點(diǎn),一次函數(shù)圖像與x軸交于點(diǎn)D.
(1)b = ,m = ;
(2)過(guò)點(diǎn)B作直線(xiàn)l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),點(diǎn)C是點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn).試判斷點(diǎn)B、E、C是否在同一條直線(xiàn)上,并說(shuō)明理由.
(3)連結(jié)AO、BO,求△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年是一個(gè)讓人記憶猶新的年份,霧霾天氣持續(xù)籠罩我國(guó)大部分地區(qū),口罩市場(chǎng)出現(xiàn)熱銷(xiāo),某旗艦網(wǎng)店用8000元購(gòu)進(jìn)甲、乙兩種型號(hào)的口罩,銷(xiāo)售完后共獲利2800元,進(jìn)價(jià)和售價(jià)如下表:
品名 價(jià)格 | 甲型口罩 | 乙型口罩 |
進(jìn)價(jià)(元/袋) | 20 | 25 |
售價(jià)(元/袋) | 26 | 35 |
(1)求該網(wǎng)店購(gòu)進(jìn)甲、乙兩種型號(hào)口罩各多少袋?
(2)該網(wǎng)店第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種型號(hào)口罩,購(gòu)進(jìn)乙種型號(hào)口罩袋數(shù)不變,而購(gòu)進(jìn)甲種型號(hào)口罩袋數(shù)是第一次的2倍.甲種口罩按原售價(jià)出售,而乙種口罩讓利銷(xiāo)售.若兩種型號(hào)的口罩都售完,要使第二次銷(xiāo)售活動(dòng)獲利不少于3680元,乙種型號(hào)的口罩最低售價(jià)為每袋多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥EF,則∠A、∠C、∠D、∠E滿(mǎn)足的數(shù)量關(guān)系是( )
A. ∠A+∠C+∠D+∠E=360°
B. ∠A+∠D=∠C+∠E
C. ∠A-∠C+∠D+∠E=180°
D. ∠E-∠C+∠D-∠A=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點(diǎn)E,BF平分∠ABC,交CD于點(diǎn)F.
(1)、求證:DE=BF;(2)、連接EF,寫(xiě)出圖中所有的全等三角形.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,廣宇購(gòu)物中心設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),并規(guī)定:顧客購(gòu)物滿(mǎn)20元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),當(dāng)轉(zhuǎn)盤(pán)停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).
轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的次數(shù)n | 100 | 200 | 400 | 500 | 1000 |
落在“牙膏”區(qū)域的次數(shù)m | 32 | 58 | 121 | 149 | 300 |
落在“牙膏”區(qū)域的頻率 | 0.3025 |
(1)計(jì)算并完成上面的表格;
(2)請(qǐng)估計(jì),當(dāng)n很大時(shí),頻率將會(huì)接近多少?
(3)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤(pán)一次,你獲得牙膏的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周?chē)囊恍┩瑢W(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).
請(qǐng)根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問(wèn)題:
(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).
(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.
(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com