如圖,已知對角線交于O,以AB、CD為斜邊向外作等腰直角三角形DABEDCDF,求證:DABEDCDF關(guān)于O點(diǎn)對稱。

 

答案:
解析:

可得到AB=CDAO=OC。

由已知易證DEABDFCD,∴ AE=CF。

ABCD,∴ ÐBAO=ÐOCD! ÐOCF=ÐOAE! DEAODFCO! ÐAOE=ÐCOF。

ÐAOE+ÐAOF=ÐCOF+ÐAOF=180°。

E,O,F三點(diǎn)共線。

AO=OCBO=OD,∴ DAEBDCFD關(guān)于O點(diǎn)對稱

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線交x軸于點(diǎn)A、點(diǎn)B,交y軸于點(diǎn)C,且點(diǎn)A(6,0),點(diǎn)C(0,4),AB=5OB,設(shè)點(diǎn)E(x,y)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形.
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
(4)是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B
【小題1】求AB兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
【小題2】設(shè))是直線上的一點(diǎn),QOP的中點(diǎn)(O是原點(diǎn)),以PQ為對角線作正方形PEQF.若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
【小題3】在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標(biāo)版中考綜合模擬數(shù)學(xué)卷(11) 題型:計算題

如圖,已知拋物線x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B
【小題1】求AB兩點(diǎn)的坐標(biāo),并求直線AB的解析式;
【小題2】設(shè))是直線上的一點(diǎn),QOP的中點(diǎn)(O是原點(diǎn)),以PQ為對角線作正方形PEQF.若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;
【小題3】在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標(biāo)版中考綜合模擬數(shù)學(xué)卷(11) 題型:解答題

如圖,已知拋物線x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B

1.求AB兩點(diǎn)的坐標(biāo),并求直線AB的解析式;

2.設(shè))是直線上的一點(diǎn),QOP的中點(diǎn)(O是原點(diǎn)),以PQ為對角線作正方形PEQF.若正方形PEQF與直線AB有公共點(diǎn),求x的取值范圍;

3.在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案