如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
【答案】分析:(1)通過全等三角形△ADE≌△CBF的對應(yīng)邊相等證得AE=CF;
(2)根據(jù)平行四邊形的判定定理:對邊平行且相等的四邊形是平行四邊形證得結(jié)論.
解答:(1)證明:如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2
∴∠5=∠6
∵在△ADE與△CBF中,

∴△ADE≌△CBF(ASA),
∴AE=CF;

(2))證明:∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF,
∴四邊形EBFD是平行四邊形.
點評:本題考查了全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案