【題目】新華商場銷售某種冰箱,每臺進(jìn)貨價(jià)為2500元.市場調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達(dá)到5000元,設(shè)每臺冰箱的定價(jià)為x元,則x滿足的關(guān)系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

【答案】C

【解析】

銷售利潤=一臺冰箱的利潤×銷售冰箱數(shù)量一臺冰箱的利潤=售價(jià)﹣進(jìn)價(jià),降低售價(jià)的同時(shí),銷售量就會(huì)提高,“一減一加”,根據(jù)每臺的盈利×銷售的件數(shù)=5000即可列方程求解

設(shè)每臺冰箱的定價(jià)應(yīng)為x,根據(jù)題意得

x2500)(8+4)=5000

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司新研發(fā)一種辦公室用壁掛式電磁日歷,底板是一塊長方形磁塊,再用31枚圓柱形小鐵片標(biāo)上數(shù)字吸附在底板上作為日期,如圖1200710月份日歷

1)用長方形和正方形分別圈出相鄰的3個(gè)數(shù)和9個(gè)數(shù),若設(shè)圈出的數(shù)的中心數(shù)為a,用含a的整式表示這3個(gè)數(shù)的和與9個(gè)數(shù)的和,結(jié)果分別為      

2)用某種圖形圈出相鄰的5個(gè)數(shù),使這5個(gè)數(shù)的和能表示成5a的形式,請?jiān)趫D2中畫出一個(gè)這樣的圖形.

3)用平行四邊形圈出相鄰的四個(gè)數(shù),是否存在這樣的4個(gè)數(shù)使得a+b+c+d114?如果存在就求出來,不存在說明理由.

4)第一次翻動(dòng)31枚日歷鐵片,第二次翻動(dòng)其中的30枚,第三次翻動(dòng)其中的29枚,……,第31次只翻動(dòng)其中的一枚,按這樣的方法翻動(dòng)日歷鐵片,能否使鐵板上所有的31枚鐵片原來有數(shù)字的一面都朝下,試通過計(jì)算證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機(jī)小李昨天下午的營運(yùn)全是在東西走向的人民大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍倘缦拢?/span>+15,-2,+3,-1,+10,-3,-2.

(1)將最后一名乘客送往目的地時(shí),小李距離下午出車時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?

(2)若汽車耗油量為,這天下午小李共耗油多少L?

(3)小李所開的出租車按物價(jià)部門規(guī)定,起步價(jià)(不超過3km)5元,超過3km超過的部分每千米收費(fèi)1元,小李這天下午收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知R tABC,ABC90°,以直角邊AB為直徑作O,交斜邊AC于點(diǎn)D,連結(jié)BD

1)若AB3,BC4,求邊BD的長;

2)取BC的中點(diǎn)E,連結(jié)ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過8780元購進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.

①若設(shè)購進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?

②若所購進(jìn)羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時(shí)所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開始,所治理的每家工廠一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長是ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昆明市某校學(xué)生會(huì)干部對校學(xué)生會(huì)倡導(dǎo)的牽手滇西自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),對學(xué)校部分捐款人數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì)后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計(jì)圖(圖中信息不完整).已知A、B兩組捐款人數(shù)的比為15

組別

捐款額x/

人數(shù)

A

1≤x10

a

B

10≤x20

100

C

20≤x30

D

30≤x40

E

40≤x50

請結(jié)合以上信息解答下列問題.

1a   ,本次調(diào)查樣本的容量是   ;

2)先求出C組的人數(shù),再補(bǔ)全捐款人數(shù)分組統(tǒng)計(jì)圖1”;

3)根據(jù)統(tǒng)計(jì)情況,估計(jì)該校參加捐款的4500名學(xué)生有多少人捐款在2040元之間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在同一水平面從左到右依次是大廈、別墅、小山、小彬?yàn)榱藴y得小山的高度,在大廈的樓頂B處測得山頂C的俯角∠GBC=13°,在別墅的大門A點(diǎn)處測得大廈的樓頂B點(diǎn)的仰角∠BAO=35°,山坡AC的坡度i=1:2OA=500米,則山C的垂直高度約為( )(參考數(shù)據(jù):sin13°≈0.22,tan13°≈0.23,sin35°≈0.57

A. 161.0 B. 116.4 C. 106.8 D. 76.2

查看答案和解析>>

同步練習(xí)冊答案