【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線.
(2)若AB=2,求OC的長.
【答案】(1)、證明過程見解析;(2)、2.
【解析】
試題分析:(1)、連接DO,由三角形的外角與內(nèi)角的關(guān)系易得∠DOC=∠C=45°,故有∠ODC=90°,即CD是圓的切線.(2)、由1知,CD=OD=AB,在直角△COD中,利用勾股定理即可求解.
試題解析:(1)、連接DO, ∵AO=DO, ∴∠DAO=∠ADO=22.5°. ∴∠DOC=45°.
又∵∠ACD=2∠DAB, ∴∠ACD=∠DOC=45°. ∴∠ODC=90°. 又∵OD是⊙O的半徑,
∴CD是⊙O的切線.
(2)、連接DB, ∵直徑AB=2,△OCD為等腰直角三角形, ∴CD=OD=,OC=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓的半徑分別為2和5,如果這兩圓內(nèi)含,那么圓心距d的取值范圍是( 。
A.0<d<3B.0<d<7C.3<d<7D.0≤d<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:已知x、y互為相反數(shù),a、b互為倒數(shù),m的絕對值為3.求代數(shù)式4(x+y)﹣ab+m3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個等式:a1= = ×(1﹣ );
第2個等式:a2= = ×( ﹣ );
第3個等式:a3= = ×( ﹣ );
第4個等式:a4= = ×( ﹣ );
…
請解答下列問題:
(1)按以上規(guī)律列出第5個等式:a5=;
(2)用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));
(3)求a1+a2+a3+a4+…+a100的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點A(﹣3,0)、B(1,0),交y軸于點C,C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)y2=mx+n的圖象經(jīng)過B、D兩點.
(1)求二次函數(shù)的解析式及點D的坐標;
(2)根據(jù)圖象寫出y2>y1時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在排成每行七天的月歷表中取下一個3×3方塊(如圖所示).若所有日期數(shù)之和為108,且n所在的是星期四,則2n+5是星期幾?( )
A.星期四
B.星期六
C.星期日
D.星期一
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com