如圖,四邊形ABCD為一梯形紙片,AB∥CD,AD=BC,翻折紙片ABCD,使點A與點C重合,折痕為EF.連接CE、CF、BD,AC、BD 的交點為點O,AC、EF的交點為點G.如果CE⊥AB,AB=7,CD=3.下列結論中,正確的序號是
①②⑤
①②⑤

①EF⊥AC; ②BD∥EF;③連接FO,則FO∥AB;④S四邊形AECF=AC•EF;⑤EF=
25
2
7
分析:根據(jù)軸對稱的性質,等腰梯形的特點和對角線互相垂直的四邊形的面積=對角線積的一半的知識來判斷.
解答:解:①∵翻折紙片ABCD,點A與點C重合,折痕為EF,
∴EF⊥AC,故此選項正確;
②∵CE⊥AB,翻折紙片ABCD,使點A與點C重合,
∴∠AEF=45°,
∵EF⊥AC,
∴∠CAB=45°,
易證△ADB≌△BCA(SAS),
∴∠OBA=∠OAB=45°,
∴∠OBA=∠AEF=45°,
∴BD∥EF,故此選項正確;
④∵AC⊥EF,
∴S四邊形AECF=
1
2
×AC•EF,故此選項錯誤;
⑤易得BE=(7-3)÷2=2,CE=AE=7-2=5,
作FM⊥AB于點M,則CE:BE=FM:AM,
∵∠AEF=45°,
∴設FM=ME=x,
∴AM=5-x,
5
2
=
x
5-x
,
解得:x=
25
7
,
∴EF=
2
FM=
25
2
7
,故此選項正確;
③∵∠OAB=∠OBA=∠GEA=45°,∠AGE=∠AOB=90°,AB=7,AE=5,
∴AO=
7
2
2
,AG=
5
2
2
,
∴OG=OA-AG=
2
,F(xiàn)G=EF-GE=EF-AG=
25
2
7
-
5
2
2
=
15
2
14
,
∴OG≠FG,
∴∠FOG≠45°=∠EAG,
∴FO與AB不平行,故此選項錯誤.
正確的序號是①②⑤.
故答案①②⑤.
點評:此題主要考查了軸對稱的性質,等腰梯形的性質,注意使用等腰梯形中的三角形全等,以及常用的輔助線方法,對角線互相垂直的四邊形的面積=對角線積的一半等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
关 闭