【題目】如圖,將三角形ABC向右平移5個單位長度,再向上平移3個單位長度請回答下列問題:
(1)平移后的三個頂點坐標(biāo)分別為:A1 ,B1 ,C1 ;
(2)畫出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
【答案】(1)A1(4,7),B1(1,2),C1(6,4);(2)略;(3)
【解析】
(1)根據(jù)平移的規(guī)律變化結(jié)合平面直角坐標(biāo)系寫出各點的坐標(biāo)即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A1、B1、C1的位置,然后順次連接即可;
(3)利用△ABC所在的矩形的面積減去四周三個直角三角形的面積,列式計算即可得解.
(1) 觀察圖形可知點A(-2,2),點B(-5,-3),點C(0,-1),
所以將三角形ABC向右平移5個單位長度,再向上平移3個單位長度后所得對應(yīng)點的坐標(biāo)為:A1(3,5),B1(0,0),C1(5,2);
(2)△A1B1C1如圖所示;
(3)△ABC的面積=5×5-×5×2-×2×3-×3×5
=25-5-3-7.5
=25-15.5
=9.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,求EE′的長?并求出∠BE′C的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知AB=BC=CA=4 cm,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1 cm/s;點Q沿CA、AB向終點B運動,速度為2 cm/s,設(shè)它們運動的時間為x(s),當(dāng)x=__________,△BPQ是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°.點D是AB中點,點E為邊AC上一點,連接CD,DE,以DE為邊在DE的左側(cè)作等邊三角形DEF,連接BF.
(1)△BCD的形狀為;
(2)隨著點E位置的變化,∠DBF的度數(shù)是否變化?并結(jié)合圖說明你的理由;
(3)當(dāng)點F落在邊AC上時,若AC=6,請直接寫出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級學(xué)生在5 名教師的帶領(lǐng)下去動物園秋游,動物園的門票為每 人40 元,現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊教師免費,學(xué)生按8 折收費;乙 方案:師生都7.5 折收費.
(1)若有m 名學(xué)生,用含m 的式子表示兩種優(yōu)惠方案各需多少元?
(2)當(dāng)m=70 時,采用哪種方案優(yōu)惠?
(3)當(dāng)m=100 時,采用哪種方案優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,在數(shù)軸上,|a|表示數(shù)a到原點的距離,這是絕對值的幾 何意義,進一步地,數(shù)軸上兩個點A、B,分別用a 和b 表示,那么A、B兩點之間的距離為AB=|a﹣b|利用此結(jié)論,回答以下問題:
(1)數(shù)軸上表示3 和7 的兩點之間的距離是 ,數(shù)軸上表示﹣3 和﹣7 的兩 點之間的距離是 ,數(shù)軸上表示2 和﹣3 的兩點之間的距離是 ;
(2)數(shù)軸上表示x和﹣5 的兩點A、B之間的距離是 ,如果|AB|=3,那 么x的值為 ;
(3)當(dāng)代數(shù)式|x﹣1|+|x﹣3|取最小值時,相應(yīng)的x的取值范圍是多少?最小值是多少?
(4)已知點A在數(shù)軸上對應(yīng)的數(shù)是a,點B在數(shù)軸上對應(yīng)的數(shù)是b,且|a+4|+(b﹣1)2=0,設(shè)點P在數(shù)軸上對應(yīng)的數(shù)是x,當(dāng)|PA|﹣|PB|=2時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點,AD=AB,AD、BC的延長線相交于點E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題3tan30°﹣|﹣2|+ +(﹣1)2017;
(1)計算:3tan30°﹣|﹣2|+ +(﹣1)2017;
(2)解方程: = ﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用黑白兩種顏色的正六邊形地磚按如下所示的規(guī)律拼成若干圖案:
⑴ 當(dāng)黑磚n=1時,白磚有_______塊,當(dāng)黑磚n=2時,白磚有________塊,
當(dāng)黑磚n=3時,白磚有_______塊.
⑵ 第n個圖案中,白色地磚共 塊.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com