【題目】為了解今年我校初三學(xué)生中考體育測(cè)試成績(jī),現(xiàn)對(duì)今年我校初三中考體育測(cè)試成績(jī)進(jìn)行抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C組所在的扇形的圓心角為36°,組別成績(jī)(分)頻數(shù).
組別 | 成績(jī)(分) | 頻數(shù) |
A | 30<x≤34 | 1 |
B | 34<x≤38 | 1 |
C | 38<x≤42 | 6 |
D | 42<x≤46 | b |
E | 46<x≤50 | 30 |
合計(jì) | a |
根據(jù)上面圖標(biāo)提供的信息,回答下列問題:
(1)計(jì)算頻數(shù)分布表中a與b的值;
(2)根據(jù)C組38<x≤42的組中間值40,估計(jì)C組中所有數(shù)據(jù)的和為 ;
(3)請(qǐng)估計(jì)今年我校初三學(xué)生中考體育成績(jī)的平均分(結(jié)果取整數(shù)).
【答案】(1)a=60,b=22;(2)240;(3)該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)平均分約40分.
【解析】
(1)首先根據(jù)圓心角的度數(shù)=360°×百分比可算出C部分所占百分比,再利用總數(shù)=頻數(shù)÷百分比可得總數(shù)a;利用總數(shù)減去各部分的頻數(shù)和可得b的值;
(2)利用組中值×頻數(shù)即可;
(3)首先利用平均數(shù)的求法計(jì)算出樣本平均數(shù),再利用樣本估計(jì)總體的方法可得該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)的平均分.
解:(1)a=6÷=60,
b=60﹣(1+1+6+30)=22;
(2)40×6=240,
故答案為:240;
(3)由題意:;;;;
∴(分).
可用樣本的平均分來估計(jì)總體的平均分,
因此該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)平均分約40分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=45°,線段AB在射線ON上運(yùn)動(dòng),AB=2.
(1)如圖1,已知OA=AB,AC=BC,∠ACB=90°,點(diǎn)C在∠MON內(nèi).
①求證:以點(diǎn)C為圓心,CA的半徑的圓與射線OM相切(切點(diǎn)記為點(diǎn)P);
②∠APB的大小為 .
(2)如圖2,若射線OM上存在點(diǎn)Q,使得∠AQB=30度,試?yán)脠D2,求A,O兩點(diǎn)之間距離t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來表示,已知OA=8米,距離O點(diǎn)2米處的棚高BC為米.
(1)求該拋物線的解析式;
(2)若借助橫梁DE(DE∥OA)建一個(gè)門,要求門的高度為1.5米,求橫梁DE的長(zhǎng)度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)如圖1,在四邊形ADBC中,∠ACB=∠ADB=90o,AD=BD, 探究線段AC,BC,CD之間的數(shù)量關(guān)系
小明同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90o到△AED處,點(diǎn)B,C分別 落在點(diǎn)A,E處(如圖2),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC= CD
(簡(jiǎn)單應(yīng)用)
(1)在圖1中,若AC=6,CD=,則AB= .
(2)如圖3,AB是⊙O的直徑,點(diǎn)C.D在⊙O上,∠C=45o,若AB=25,BC=24,求CD的長(zhǎng).
(拓展延伸)
(3)如圖4,∠ACB=∠ADB=90o,AD=BD,若AC=,CD=,求BC的長(zhǎng).(用含,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+與x軸交于點(diǎn)A(﹣5,0),B(1,0),頂點(diǎn)為D,與y軸交于點(diǎn)C.
(1)求拋物線的表達(dá)式及D點(diǎn)坐標(biāo);
(2)在直線AC上方的拋物線上是否存在點(diǎn)E,使得∠ECA=2∠CAB,如果存在這樣的點(diǎn)E,求出△ACE面積,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,P是AD的中點(diǎn),連BP,過A作BP的垂線,垂足為F,交BD于E,交CD于G.
(1)若矩形ABCD是正方形,如圖1,
①求證:AG=BP.
②的值為 .
(2)類比:如圖2,在矩形ABCD中,若2AB=3AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
(問題解決)∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式 x2﹣4>0 的解集為x>2或x<﹣2.
(問題應(yīng)用)(1)一元二次不等式 x2﹣16>0 的解集為 ;
(2)分式不等式>0 的解集為 ;
(3)(拓展應(yīng)用)解一元二次不等式 2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的盒子中,裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外其余都相同.
(1)你同意下列說法嗎?請(qǐng)說明理由.
①攪勻后從中任意摸出一個(gè)球,不是白球就是紅球,因此摸出白球和摸出紅球這兩個(gè)事件是等可能的.
②如果將摸出的第一個(gè)球放回?cái)噭蚝笤倜龅诙䝼(gè)球,兩次摸球就可能出現(xiàn)3種結(jié)果,即“都是紅球”、“都是白球”、“一紅一白”.這三個(gè)事件發(fā)生的概率相等.
(2)攪勻后從中任意摸出一個(gè)球,要使摸出紅球的概率為,應(yīng)如何添加紅球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com