【題目】為了解今年我校初三學(xué)生中考體育測(cè)試成績(jī),現(xiàn)對(duì)今年我校初三中考體育測(cè)試成績(jī)進(jìn)行抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C組所在的扇形的圓心角為36°,組別成績(jī)(分)頻數(shù).

組別

成績(jī)(分)

頻數(shù)

A

30x≤34

1

B

34x≤38

1

C

38x≤42

6

D

42x≤46

b

E

46x≤50

30

合計(jì)

a

根據(jù)上面圖標(biāo)提供的信息,回答下列問題:

1)計(jì)算頻數(shù)分布表中ab的值;

2)根據(jù)C38x≤42的組中間值40,估計(jì)C組中所有數(shù)據(jù)的和為  ;

3)請(qǐng)估計(jì)今年我校初三學(xué)生中考體育成績(jī)的平均分(結(jié)果取整數(shù)).

【答案】1a=60,b22;(2240;(3)該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)平均分約40分.

【解析】

1)首先根據(jù)圓心角的度數(shù)=360°×百分比可算出C部分所占百分比,再利用總數(shù)=頻數(shù)÷百分比可得總數(shù)a;利用總數(shù)減去各部分的頻數(shù)和可得b的值;

2)利用組中值×頻數(shù)即可;

3)首先利用平均數(shù)的求法計(jì)算出樣本平均數(shù),再利用樣本估計(jì)總體的方法可得該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)的平均分.

解:(1a60,

b60﹣(1+1+6+30)=22;

240×6240,

故答案為:240;

3)由題意:;;;

(分).

可用樣本的平均分來估計(jì)總體的平均分,

因此該校九年級(jí)學(xué)生這次體育測(cè)試成績(jī)平均分約40分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON45°,線段AB在射線ON上運(yùn)動(dòng),AB2

1)如圖1,已知OAAB,ACBC,∠ACB90°,點(diǎn)C在∠MON內(nèi).

①求證:以點(diǎn)C為圓心,CA的半徑的圓與射線OM相切(切點(diǎn)記為點(diǎn)P);

②∠APB的大小為   

2)如圖2,若射線OM上存在點(diǎn)Q,使得∠AQB30度,試?yán)脠D2,求A,O兩點(diǎn)之間距離t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)yax2+bx來表示,已知OA=8米,距離O點(diǎn)2米處的棚高BC米.

(1)求該拋物線的解析式;

(2)若借助橫梁DEDEOA)建一個(gè)門,要求門的高度為1.5米,求橫梁DE的長(zhǎng)度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)如圖1,在四邊形ADBC,ACB=ADB=90oAD=BD, 探究線段AC,BC,CD之間的數(shù)量關(guān)系

小明同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90o到△AED,點(diǎn)B,C分別 落在點(diǎn)A,E(如圖2),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC= CD

(簡(jiǎn)單應(yīng)用)

(1)在圖1,AC=6,CD=,則AB= .

(2)如圖3,AB是⊙O的直徑,點(diǎn)C.D在⊙O,C=45o,若AB=25,BC=24,求CD的長(zhǎng).

(拓展延伸)

(3)如圖4,ACB=ADB=90o,AD=BD,AC=,CD=,BC的長(zhǎng).(用含,的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊形狀如圖的五邊形余料,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.

1)若所截矩形材料的一條邊是,求矩形材料的面積;

2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+x軸交于點(diǎn)A(﹣50),B1,0),頂點(diǎn)為D,與y軸交于點(diǎn)C

1)求拋物線的表達(dá)式及D點(diǎn)坐標(biāo);

2)在直線AC上方的拋物線上是否存在點(diǎn)E,使得∠ECA2CAB,如果存在這樣的點(diǎn)E,求出ACE面積,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,PAD的中點(diǎn),連BP,過ABP的垂線,垂足為F,交BDE,交CDG

1)若矩形ABCD是正方形,如圖1,

求證:AGBP

的值為   

2)類比:如圖2,在矩形ABCD中,若2AB3AD,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題背景)先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式x240

(問題解決)∵x24=(x+2)(x2

x240可化為(x+2)(x2)>0

由有理數(shù)的乘法法則兩數(shù)相乘,同號(hào)得正,得

解不等式組①,得x2,

解不等式組②,得x<﹣2,

∴(x+2)(x2)>0的解集為x2x<﹣2,

即一元二次不等式 x240 的解集為x2x<﹣2

(問題應(yīng)用)(1)一元二次不等式 x2160 的解集為   ;

2)分式不等式0 的解集為   

3)(拓展應(yīng)用)解一元二次不等式 2x23x0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的盒子中,裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外其余都相同.

(1)你同意下列說法嗎?請(qǐng)說明理由.

①攪勻后從中任意摸出一個(gè)球,不是白球就是紅球,因此摸出白球和摸出紅球這兩個(gè)事件是等可能的.

②如果將摸出的第一個(gè)球放回?cái)噭蚝笤倜龅诙䝼(gè)球,兩次摸球就可能出現(xiàn)3種結(jié)果,即都是紅球都是白球、一紅一白”.這三個(gè)事件發(fā)生的概率相等.

(2)攪勻后從中任意摸出一個(gè)球,要使摸出紅球的概率為,應(yīng)如何添加紅球?

查看答案和解析>>

同步練習(xí)冊(cè)答案