【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)OAEBCCB延長(zhǎng)線于E,CFAEAD延長(zhǎng)線于點(diǎn)F

1)求證:四邊形AECF為矩形;

2)連接OE,若AE=4,AD=5,求tanOEC的值.

【答案】1)證明詳見(jiàn)解析;(2tanOEC=

【解析】

1)根據(jù)菱形的性質(zhì)得到ADBC,推出四邊形AECF是平行四邊形,根據(jù)矩形的判定定理即可得到結(jié)論;

2)根據(jù)已知條件得到得到CE=8.根據(jù)矩形的性質(zhì)可得∠OEC=OCE,于是得到結(jié)論.

1)證明:∵菱形ABCD

ADBC

CFAE,

∴四邊形AECF是平行四邊形.

AEBC,

∴平行四邊形AECF是矩形;

2)如圖,連接OE,

∵菱形ABCD,

AD=AB=5

AB=BC=5

CE=8

∵∠OEC=OCE,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李在景區(qū)銷(xiāo)售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷(xiāo)售單價(jià)定為8元時(shí),每天可以銷(xiāo)售200件.市場(chǎng)調(diào)查反映:銷(xiāo)售單價(jià)每提高1元,日銷(xiāo)量將會(huì)減少10件,物價(jià)部門(mén)規(guī)定:銷(xiāo)售單價(jià)不能超過(guò)12元,設(shè)該紀(jì)念品的銷(xiāo)售單價(jià)為x(元),日銷(xiāo)量為y(件),日銷(xiāo)售利潤(rùn)為w(元).

1)求yx的函數(shù)關(guān)系式.

2)要使日銷(xiāo)售利潤(rùn)為720元,銷(xiāo)售單價(jià)應(yīng)定為多少元?

3)求日銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時(shí),日銷(xiāo)售利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是△ABC的角平分線,過(guò)點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是假命題的是(

A.三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等

B.如果等腰三角形的兩邊長(zhǎng)分別是56,那么這個(gè)等腰三角形的周長(zhǎng)為16

C.將一次函數(shù)y3x-1的圖象向上平移3個(gè)單位,所得直線不經(jīng)過(guò)第四象限

D.若關(guān)于x的一元一次不等式組無(wú)解,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知B港口位于A觀測(cè)點(diǎn)北偏東45°方向,且其到A觀測(cè)點(diǎn)正北風(fēng)向的距離BM的長(zhǎng)為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達(dá)C處,測(cè)得C處位于A觀測(cè)點(diǎn)北偏東75°方向,則此時(shí)貨輪與A觀測(cè)點(diǎn)之間的距離AC的長(zhǎng)為( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在小明的一次投籃中,球出手時(shí)離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米.籃球運(yùn)行的軌跡為拋物線,籃球中心距離地面3米,通過(guò)計(jì)算說(shuō)明此球能否投中.

探究一:若出手的角度、力度和高度都不變的情況下,求小明朝著籃球架再向前平移多少米后跳起投籃也能將籃球投入籃筐中?

探究二:若出手的角度、力度和高度都發(fā)生改變的情況下,但是拋物線的頂點(diǎn)等其他條件不變,求小明出手的高度需要增加多少米才能將籃球投入籃筐中?

探究三:若出手的角度、力度都改變,出手高度不變,籃筐的坐標(biāo)為(6,3.44),球場(chǎng)上方有一組高6米的電線,要想在籃球不觸碰電線的情況下,將籃球投入籃筐中,直接寫(xiě)出二次函數(shù)解析式中a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是銳角的外接圓,的切線,切點(diǎn)為,,連結(jié),的平分線,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)的外心;③;④若點(diǎn),分別是上的動(dòng)點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、P,點(diǎn)A6,),點(diǎn)P的橫坐標(biāo)是2.拋物線yax2+bx+ca≠0)經(jīng)過(guò)坐標(biāo)原點(diǎn),且與x軸交于點(diǎn)B,頂點(diǎn)為P

求:(1)反比例函數(shù)的解析式;

2)拋物線的表達(dá)式及B點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案