如圖,拋物線軸交于、兩點(diǎn),與軸正半軸交于點(diǎn),且,0),
(1)求出拋物線的解析式;
(2)如圖①,作矩形,使過點(diǎn),點(diǎn)邊上的一動(dòng)點(diǎn),連接,作于點(diǎn),設(shè)線段的長(zhǎng)為,線段的長(zhǎng)為,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求的函數(shù)關(guān)系式并寫出自變量的取值范圍,在同一直角坐標(biāo)系中,該函數(shù)的圖象與圖①的拋物線中≥0的部分有何關(guān)系?
(3)如圖②,在圖①的拋物線中,點(diǎn)為其頂點(diǎn),為拋物線上一動(dòng)點(diǎn)(不與重合),取點(diǎn),0),作(點(diǎn)、按逆時(shí)針順序),當(dāng)點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),直線、是否存在某種位置關(guān)系?若存在,寫出并證明你的結(jié)論;若不存在,請(qǐng)說明理由。
解:(1)∵,
∴拋物線的對(duì)稱軸為,
,0),∴(2,0)
,∴(0,4)
,
, 
 
(2)∵四邊形為矩形,

,即
,(
又∵,

∴圖①的拋物線中,≥0時(shí),
≥0的部分向右平移4個(gè)單位得到).
(3),理由如下:
連接并延長(zhǎng)交延長(zhǎng)線于點(diǎn),設(shè)直線、交于點(diǎn),
∵點(diǎn)H為拋物線的頂點(diǎn),
∴H(,),
且A(,0),,0),

,
,且
,
,

∴ 

,則
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與軸交于,0)、,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個(gè)根。(14分)

(1)求拋物線的解析式;

(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn),交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,

點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是

否存在點(diǎn),使以為頂

點(diǎn)的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點(diǎn)的坐標(biāo),

若不存在,請(qǐng)說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于兩點(diǎn),與軸相交于點(diǎn).連結(jié)AC、BC,B、C兩點(diǎn)的坐標(biāo)分別為B(1,0)、,且當(dāng)x=-10和x=8時(shí)函數(shù)的值相等.

 

 

1.求a、b、c的值;

2.若點(diǎn)同時(shí)從點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).連結(jié),將沿翻折,當(dāng)運(yùn)動(dòng)時(shí)間為幾秒時(shí),點(diǎn)恰好落在邊上的處?并求點(diǎn)的坐標(biāo)及四邊形的面積;

3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸的交點(diǎn)為E,若△ODE與△OBC相似,求新拋物線的解析式。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于A、B兩點(diǎn),與軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.

(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;

(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90º后再沿軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;

(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q. 問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.                                                                                     

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆四川省鹽邊縣紅格中學(xué)九年級(jí)下學(xué)期摸底考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn).

(1)請(qǐng)求出拋物線頂點(diǎn)的坐標(biāo)(用含的代數(shù)式表示),兩點(diǎn)的坐標(biāo);
(2)經(jīng)探究可知,的面積比不變,試求出這個(gè)比值;
(3)是否存在使為直角三角形的拋物線?若存在,請(qǐng)求出;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆仙師中學(xué)九年級(jí)第一次月考試考試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線與軸交于,0)、,0)兩點(diǎn),且,與軸交于點(diǎn),其中是方程的兩個(gè)根。(14分)

(1)求拋物線的解析式;

(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn),交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);

(3)點(diǎn)在(1)中拋物線上,

點(diǎn)為拋物線上一動(dòng)點(diǎn),在軸上是

否存在點(diǎn),使以為頂

點(diǎn)的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點(diǎn)的坐標(biāo),

若不存在,請(qǐng)說明理由。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案