【題目】如圖,是某種蠟燭在燃燒過程中高度與時間之間關系的圖像,由圖像解答下列問題:
(1)此蠟燭燃燒1小時后,高度為 cm;經(jīng)過 小時燃燒完畢;
(2)求這個蠟燭在燃燒過程中高度與時間之間關系的解析式.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是線段AB的中點,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求證:△ACD≌△BCE;
(2)若∠D=75°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是CE的中點,△BCF和△CDG都是等邊三角形,點M為AE的中點,連接FG.
(1)如圖1,若點E在AC的延長線上,點M與點C重合,則△FMG 等邊三角形(填“是”或“不是”)
(2)將圖1中的CE縮短,得到圖2.求證:△FMG為等邊三角形;
(3)將圖2中的CE繞點E順時針旋轉一個銳角,得到圖3.求證:△FMG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點O,AE與DC交于點M,BD與AC交于點N.
(1)如圖1,猜想AE與BD的數(shù)量關系與位置關系,并加以證明.
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距___千米。
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是___小時。
(3)B出發(fā)后___小時與A相遇。
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,___小時與A相遇,相遇點離B的出發(fā)點___千米。在圖中表示出這個相遇點C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市郊外景區(qū)內一條筆直的公路l經(jīng)過A、B兩個景點,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點C.經(jīng)測量,C位于A的北偏東60°的方向上,C位于B的北偏東30°的方向上,且AB=10km.
(1)求景點B與C的距離;
(2)為了方便游客到景點C游玩,景區(qū)管委會準備由景點C向公路l修一條距離最短的公路,不考慮其他因素,求出這條最短公路的長.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解決數(shù)學問題時,我們一般先仔細讀題干,找出有用信息作為已知條件,然后用這些信息解決問題,但是有的題目信息比較明顯,我們把這樣的信息稱為顯性條件,而有的信息不太明顯需要結合圖形,特殊式子成立的條件,實際問題等發(fā)現(xiàn)隱含信息作為條件,這樣的條件稱為隱含條件,所以我們在做題時更注意發(fā)現(xiàn)題目中的隱含條件
(閱讀理解)
讀下面的解題過程,體會加何發(fā)現(xiàn)隱含條件,并回答.
化簡:.解:隱含條件1-3x≥0,解得:x,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x
(啟發(fā)應用)
已知△ABC三條邊的長度分別是,記△ABC的周長為C△ABC
(1)當x=2時,△ABC的最長邊的長度是______(請直接寫出答案).
(2)請求出C△ABC(用含x的代數(shù)式表示,結果要求化簡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(情境)某課外興趣小組在一次折紙活動課中.折疊一張帶有條格的長方形的紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格線所在的直線的交點,用平滑的曲線順次連結各交點,得到一條曲線.
圖1 圖2 圖3
(探索)(1)如圖2,在平面直角坐標系xOy中,將矩形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB邊放在y軸的正半軸上,AB=m,AD=n,(m≤n).將紙片折疊,使點B落在邊AD上的點E處,過點E作EQ⊥BC于點Q,折痕MN所在直線與直線EQ相交于點P,連結OP.求證:四邊形OMEP是菱形;
(歸納)(2)設點P坐標是(x,y),求y與x的函數(shù)關系式(用含m的代數(shù)式表示).
(運用)(3)將矩形紙片ABCD如圖3放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在點K,使得△KCF的面積是△KOC面積的?若存在,寫出點K的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,AE 平分∠BAD,DE 平分∠ADC,以下結論:①∠AED=90°;②點 E 是 BC 的中點;③DE=BE;④AD=AB+CD;其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com