【題目】如圖,OB為∠AOC的平分線,OD是∠COE的平分線.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD為多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB為多少度?
【答案】40°.
【解析】試題分析:(1)根據(jù)角平分線的定義可以求得∠BOD=∠AOB+∠DOE;
(2)根據(jù)角平分線的定義易求得∠EOC=2∠COD=60°,所以由圖中的角與角間的和差關(guān)系可以求得∠AOC=80°,最后由角平分線的定義求解.
試題解析:解:(1)因為OB為∠AOC的平分線,OD是∠COE的平分線,
所以∠AOB=∠BOC,∠DOE=∠DOC.
所以∠BOD=∠BOC+∠DOC=∠AOB+∠DOE=40°+30°=70°.
(2)因為OD是∠COE的平分線,∠COD=30°,
所以∠EOC=2∠COD=60°.
因為∠AOE=140°,∠AOC=∠AOE-∠EOC=80°.
又因為OB為∠AOC的平分線,
所以∠AOB=∠AOC=40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年鄞州區(qū)財政收入仍保持持續(xù)增長態(tài)勢,全年財政收入為373.9億元,其中373.9億元用科學(xué)記數(shù)法表示為( )
A.373.9×108元
B.37.39×109元
C.3.739×1010元
D.0.3739×1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一次函數(shù)y=﹣x+b的圖象與x軸、y軸的交點分別為A、B與反比例函數(shù)的圖象交于點C、D,且.
(1)求∠BAO的度數(shù);
(2)求O到DC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市6月上旬前5天的最高氣溫如下(單位:℃):28,29,31,29,32,對于這組數(shù)據(jù),眾數(shù)是_____,中位數(shù)是_____,極差是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知⊙O的半徑是4,△ABC內(nèi)接于⊙O,AC=.
①求∠ABC的度數(shù);
②已知AP是⊙O的切線,且AP=4,連接PC.判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)如圖2,已知ABCD的頂點A、B、D在⊙O上,頂點C在⊙O內(nèi),延長BC交⊙O于點E,連接DE.求證:DE=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A.鄰邊之比相等的兩個平行四邊形一定相似B.鄰邊之比相等的兩個矩形一定相似
C.對角線之比相等的兩個平行四邊形一定相似D.對角線之比相等的兩個矩形一定相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)足球隊9名隊員的年齡情況如下:
年齡(單位:歲) | 14 | 15 | 16 | 17 |
人數(shù) | 1 | 4 | 2 | 2 |
則該隊隊員年齡的眾數(shù)和中位數(shù)分別是( )
A. 15,15 B. 15,16 C. 15,17 D. 16,15
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com