如圖,在山頂有座移動通信發(fā)射塔BE,高為30米.為了測量山高AB,在地面引一基線ADC,測得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)

【答案】分析:首先分析圖形:根據(jù)題意構造直角三角形;本題涉及到兩個直角三角形△BAD、△EAC,應解兩個三角形并借助DC=AC-AD=40;構造方程關系式,進而可求出答案.
解答:解:如圖,在Rt△BAD中,∠BAD=90°,∠BDA=60°,設AB=x米,
∴AD=xcot60°=x.
在Rt△EAC中,∠EAC=90°,∠C=45°,
∴AE=AC.
即x+30=x+40.
∴(1-)x=10.
∴x=15+5米.
答:山高AB為(15+5)米.
點評:本題考查俯角、仰角的定義,要求學生能借助俯角、仰角構造直角三角形并結合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在山頂有座移動通信發(fā)射塔BE,高為30米.為了測量山高AB,在地面引一基線ADC,測得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在山頂有座移動通信發(fā)射塔BE,高為30米.為了測量山高AB,在地面引一基線ADC,測得∠BDA=60°,∠C=45°,DC=40米,則山高AB=
 
米.(不求近似值)

查看答案和解析>>

科目:初中數(shù)學 來源:第7章《銳角三角函數(shù)》中考題集(42):7.6 銳角三角函數(shù)的簡單應用(解析版) 題型:解答題

如圖,在山頂有座移動通信發(fā)射塔BE,高為30米.為了測量山高AB,在地面引一基線ADC,測得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(39):1.3 解直角三角形(解析版) 題型:解答題

如圖,在山頂有座移動通信發(fā)射塔BE,高為30米.為了測量山高AB,在地面引一基線ADC,測得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)

查看答案和解析>>

同步練習冊答案